Math, asked by aggarwaleshan4104, 1 month ago

In an arithmetic sequence 4th term is 31and 8th term is59.find 25th term

Answers

Answered by krishnaphanikodali
0

Step-by-step explanation:

a+3d=31

a+7d=59

By solving the above given equations we get d=7

&substituting d=7 in a+3d=31 we get a=10

25 th term = a+24d =10+168 =178

Answered by dibyangshughosh309
30

Answer:

 \large{ \bull \:  \: \green{\underline{ \underline{ \red{ \boxed{ \color{pink}{ \mathfrak{25th \: term \:  = 178}}}}}}}}

Step-by-step explanation:

Given :

  \\ \sf\pink{where}{\begin{cases} \sf 4th \: term \: is \: 31 \\  \\  \sf 8th \: term \: is \: 59\end{cases}} \\

To Find :

  • the 25th term

Solution :

 \underline{ \bf{As  \: we \:  know : }}

 \large{ \star{ \underline{ \boxed{ \color{red}{ \mathbf{t_n = a + (n - 1)d}}}}}}

__________________________________________

We can also write the terms in different way.

 \\  \bf \: \to t_4 = a + 3d  \\

 \\ \to \bf 31 = a + 3d   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \small{( {eq}^{1})  } \\

And,

 \\  \to \bf \: t _8 = a + 7d \\

 \\ \bf \to59 = a + 7d  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \small{( {eq}^{2})} \\

Subtracting eq¹ from eq²

 \\  \tt59 =  {a} + 7d \\  \tt31 = a + 3d \\  -  -  -  -  -  -  -  \\  \tt28 = 4d \\ \tt d =  \cancel\frac{28}{4}  \\  \pink{\star} \boxed{ \underline{ \tt \: d = 7}} \\

Putting the value of d on eq¹

 \\  \blue{ \dashrightarrow} \tt \: 31 = a + 3(7) \\

 \\  \blue{ \dashrightarrow} \tt31 = a + 21 \\

 \\  \blue{ \dashrightarrow} \tt \: a = 31 - 21 \\

 \\  \blue{ \dashrightarrow}  \pink{ \star}{ \boxed{ \underline{\tt \: a = 10}}} \\

Now we will use the formula of finding a term

 \\  \tt \: \longmapsto \: \color{magenta}{t_n = a + (n - 1)d} \\

 \\ \longmapsto \tt t_{25} = 10 + (25 - 1)7 \\

\\ \longmapsto \tt t_{25} =10 + (24)7 \\

\\ \longmapsto \tt t_{25} =10 + 168 \\

\\ \longmapsto \tt t_{25} =178

__________________________________________

 \underline{ \text{So the value of 25th term is 178}}

Similar questions