Math, asked by fathimahannath313, 10 months ago

In an arithmetic sequence,first term is 5 and square of seventh term is 529. Find the common difference of this sequence. Find the sum of its first 7 terms.​

Answers

Answered by BrainlyConqueror0901
34

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sum\:of\:7th\:term_{(when\:d=3)}=98}}}

\green{\tt{\therefore{Sum\:of\:7th\:term_{(when\:d=\frac{-14}{3})}=-63}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies First \:term(a_{1} ) = 5 \\  \\  \tt:  \implies Square \: of \: 7th \: term(a_{7})^{2}  = 529 \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Sum \: of \: 7\: term(s_{7}) = ?

• According to given question :

 \tt: \implies  (a_{7})^{2}  = 529 \\  \\  \tt:  \implies (a + 6d)^{2}  = 529 \\  \\  \tt:  \implies  {a}^{2}  + 36 {d}^{2}  + 12ad = 529 \\  \\ \tt:  \implies {5}^{2}  + 36 {d}^{2}  + 12 \times 5 \times d = 529 \\  \\ \tt:  \implies25 + 36 {d}^{2}  + 60d = 529 \\  \\ \tt:  \implies36 {d}^{2}  + 60d = 529 - 25 \\  \\ \tt:  \implies 12( 3{d}^{2}  + 5d) = 504 \\  \\ \tt:  \implies {3d}^{2}  + 5d = 42 \\  \\ \tt:  \implies {3d}^{2}  + 5d - 42 = 0 \\  \\ \tt:  \implies  {3d}^{2}  - 9d + 14d - 42 = 0 \\  \\ \tt:  \implies 3d(d - 3) + 14(d - 3) = 0 \\  \\ \tt:  \implies(3d + 14)(d - 3) = 0 \\  \\  \green{\tt:  \implies d = 3 \: and \:  \frac{ - 14}{3} } \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  s_{n} =  \frac{n}{2} (2a + (n - 1)d)

\tt\circ \: First \: term = 5 \\  \\ \tt\circ \: Common \: difference = 3 \\  \\ \tt\circ \: Number \: of \: term = 7 \\  \\  \tt:  \implies  s_{7} =  \frac{7}{2} (2 \times 5 + (7 - 1) \times 3) \\  \\  \tt:  \implies  s_{7} =  \frac{7}{2} (10 + 18) \\  \\  \tt:  \implies  s_{7} =  \frac{7}{2}  \times 28 \\  \\   \green{\tt:  \implies  s_{7} = 98} \\  \\   \bold{For \: another \: Common \: difference} \tt\circ \: Common \: difference  =  \frac{ - 14}{3}  \\  \\  \tt:  \implies  s_{7} = \frac{7}{2} (2 \times 5 + (7 - 1) \times  \frac{ - 14}{3} ) \\  \\ \tt:  \implies  s_{7} = \frac{7}{2} (10  - 28) \\  \\  \green{\tt:  \implies  s_{7} = - 63}

Answered by Saby123
35

</p><p>\huge{\tt{\pink{Hello!!!}}}

</p><p>\tt{\purple{Given \: - }}

 \tt{ \red{ =  &gt; a \:  = 5 \: }}

</p><p>\tt{\blue{=&gt;{a_{7}}^2 \: = 529 }}

</p><p>\tt{\green{Let \: common \: difference \: be \: d. }}

Hence :

 \tt{ \orange{f(x) = {(6d + 5)}^{2}  = 529}}

Solving the above question we get :

</p><p>\purple{f(x) =&gt; \begin{cases}</p><p></p><p>d = 3   \\</p><p></p><p>d = \frac{-14}{3} </p><p></p><p>\end{cases} }

</p><p>\huge{\boxed{\boxed{\red{S = 2a + (n-1)d }}}}

</p><p>\tt{\blue{=&gt;n = 7}}

Placing seperate values of d and solving for each we get :

</p><p>\purple{Sum \: Till \: 7 \:terms  = &gt;\begin{cases}</p><p></p><p>S_{7} = 98   \\</p><p></p><p>S_{7}= -63</p><p></p><p>\end{cases} }

Similar questions