Math, asked by yashikasuryavanshi00, 9 months ago

In an arithmetic sequence

S10 = 125, a1 = 17 find the common difference, d,of the sequence​

Answers

Answered by Anonymous
0

\bf\huge\blue{\underline{\underline{ Question : }}}

In an arithmetic sequence S10 = 125, a1 = 17 find the common difference(d) & the sequence.

\bf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

  • S10 = 125
  • a = 17
  • n = 10

To find,

  • Common difference (d).
  • AP series.

Formula used:

\tt\red{:\implies S_{n} = \frac{n}{2} [ 2a + (n - 1)d ]}

  • Substitute the values.

\bf\:\leadsto 125 = \frac{10}{2} [ 2(17) + (10 - 1)d ]

\bf\:\leadsto 125 = 5 [ 34 + (9)d ]

\bf\:\leadsto \frac{125}{5} =   34 + 9d

\bf\:\leadsto 25 =   34 + 9d

\bf\:\leadsto 25 -  34 = 9d

\bf\:\leadsto  9d = - 9

\bf\:\leadsto  d = \frac{- 9}{9}

\bf\:\leadsto  d = - 1

\underline{\boxed{\rm{\purple{\therefore Hence,\:common\:difference\:is-1}}}}\:\orange{\bigstar}

Now,

We know that, the general form of an AP series is :-

➡ a, a + d, a + 2d, a + 3d....

  • Substitute the values.

\bf\:\leadsto 17, 17 + (-1),17 + 2(-1), 17 + 3(-1)....

\bf\:\leadsto 17, 17 - 1,17 - 2, 17 - 3....

\bf\:\leadsto 17, 16,15,14....

\underline{\boxed{\rm{\purple{\therefore Hence,\:the\:AP\:series \:is\: 17,16,15,14,....}}}}\:\orange{\bigstar}

Verification,

  • Substitute all the values in the formula.

\bf\:\leadsto S_{10} =\frac {10}{2} [ 2(17) + (10 - 1)(-1)]

\bf\:\leadsto S_{10} =5 [ 34 + (9)(-1)]

\bf\:\leadsto S_{10} =5 [ 34 - 9]

\bf\:\leadsto S_{10} =5 [25]

\bf\:\leadsto S_{10} =125

#Hence,it was verified.

More information,

\boxed{\begin{minipage}{5 cm} AP Formulae   \\ \\$:  \implies a_{n} = a + (n - 1)d \\ \\ :\implies S_{n} = \frac{n}{2} [ 2a + (n - 1)d ] $ \end{minipage}}

______________________________________________________

Similar questions