Math, asked by 24bkramer, 1 year ago

In an arithmetic sequence t5 = 12, t10 = 26 find t15.

Answers

Answered by isafsafiya
5

Answer:

t_{15}  = 40

Given----->

 t_{5} = 12 \\  \\ t_{10} = 26

to find:-

value of t 15

as \: we \: know \\ t_{n} = a + (n - 1)d \\  \\ t_{5} = a + (5 - 1)d \\ 12 = a+ 4d \:  \: .............(1) \\  \\ t_{10} = a + (10 - 1)d \\ 26 = a + 9d \:  \: ................(2) \\  \\ now \: we \: will \: solve \: the \:  \\ as \: linear \: equation \\  \\  \: substract \: equation \: 1 \: and \:2  \\  \\  \:  \: a + 4d = 12 \\  - a + 9d = 26 \\  -  -  -  -  -  -  -  -  \\  - 5d =  - 14 \\ d =  \frac{14}{5}  \:  \\  \\ now \: put \: d =  \frac{14}{5} in \: equation \: 1 \\  \\ a + 4d = 12 \\  \\ a + 4 \times  \frac{14}{5}  = 12 \\  \\  \frac{5a + 56}{5}  = 12 \\  \\ 5a + 56 = 60 \\  \\ 5a = 60 - 56 \\  \\ 5a = 4 \\  \\ a =  \frac{4}{5}  \\  \\ now \: for \: t_{15}  \\  \\ t_{n}  = a + (n - 1)d \\ put \: a =  \frac{4}{5} and \: d \:  =  \frac{14}{5}  \\  \\ t_{15}  =  \frac{4}{5}  + (15 - 1)  \times  \frac{14}{5}  \\  \\ t_{15}  =  \frac{4}{5}  + 14 \times  \frac{14}{5}  \\  \\  \frac{4}{5}  +  \frac{196}{5}  \\ \\  t_{15}  =  \frac{196 + 4}{5}  \\  \\ t_{15}  =  \frac{200}{5}  \\  \\ t_{15}  = 40

Answered by harendrachoubay
2

t_{15} =40

Step-by-step explanation:

Let first term = a and common difference = d

Given,

t_5 = 12 and  t_{10}=26

To find, the value of t_{15}=?

We know that,

The nth term of an arithmetic progression,

t_{n} =a+(n-1)d

t_{5} =a+(5-1)d

a+4d=12       .....(1)

Also,

t_{10}=a+(10-1)d

a+9d=26    .....(2)

Subtracting (2) from (1), we get

9d - 4d = 26 - 12

⇒ 5d = 14

d=\dfrac{14}{5}

Put d=\dfrac{14}{5} in (1), we get

a+4(\dfrac{14}{5} )=12

a=12-\dfrac{56}{5} =\dfrac{60-56}{5}

a=\dfrac{4}{5}

The 15th term of an AP

t_{15} =a+14d

t_{15} =\dfrac{4}{5} +14(\dfrac{14}{5})

t_{15} =\dfrac{196+4}{5}=\dfrac{200}{5}

t_{15} =40

Hence, t_{15} =40

Similar questions