Math, asked by ANNIES09, 1 month ago

In an arithmetic sequence, the third term is 27 and the eight term is 62. What is the 5th term in the sequence?

please help me and ill mark you brainliest

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Given that,

 \red{\rm :\longmapsto\:a_3 = 27 \: }

\rm :\longmapsto\:a + (3 - 1)d = 27

\rm :\longmapsto\:a + 2d = 27 -  -  - (1)

 \red{\rm :\longmapsto\:a_8 = 62 \: }

\rm :\longmapsto\:a + (8 - 1)d = 62

\rm :\longmapsto\:a + 7d = 62 -  -  -  - (2)

On Subtracting, equation (2) from equation (1), we get

\rm :\longmapsto\:5d = 35

\bf\implies \:d \:  =  \: 7

On substituting d = 7 in equation (1), we get

\rm :\longmapsto\:a + 2(7) = 27

\rm :\longmapsto\:a + 14 = 27

\rm :\longmapsto\:a = 27  - 14

\bf\implies \:a \:  =  \: 13

Now,

\rm :\longmapsto\:a_5

\rm \:  =  \:a + (5 - 1)d

\rm \:  =  \:a + 4d

\rm \:  =  \:13 + 4 \times 7

\rm \:  =  \:13 + 28

\rm \:  =  \:41

\rm \implies\:\boxed{ \tt{ \: a_5  \: =  \: 41 \: }}

More to explore :-

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Answered by XxitsmrseenuxX
0

Answer:

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Given that,

 \red{\rm :\longmapsto\:a_3 = 27 \: }

\rm :\longmapsto\:a + (3 - 1)d = 27

\rm :\longmapsto\:a + 2d = 27 -  -  - (1)

 \red{\rm :\longmapsto\:a_8 = 62 \: }

\rm :\longmapsto\:a + (8 - 1)d = 62

\rm :\longmapsto\:a + 7d = 62 -  -  -  - (2)

On Subtracting, equation (2) from equation (1), we get

\rm :\longmapsto\:5d = 35

\bf\implies \:d \:  =  \: 7

On substituting d = 7 in equation (1), we get

\rm :\longmapsto\:a + 2(7) = 27

\rm :\longmapsto\:a + 14 = 27

\rm :\longmapsto\:a = 27  - 14

\bf\implies \:a \:  =  \: 13

Now,

\rm :\longmapsto\:a_5

\rm \:  =  \:a + (5 - 1)d

\rm \:  =  \:a + 4d

\rm \:  =  \:13 + 4 \times 7

\rm \:  =  \:13 + 28

\rm \:  =  \:41

\rm \implies\:\boxed{ \tt{ \: a_5  \: =  \: 41 \: }}

More to explore :-

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions