Accountancy, asked by mishrasaumya299, 1 month ago

in an asymmetric distribution mean is 68 and median is 71 calculate mode

Answers

Answered by saudharmj
0

Answer:

Consider the following data set.

4; 5; 6; 6; 6; 7; 7; 7; 7; 7; 7; 8; 8; 8; 9; 10

This data set can be represented by following histogram. Each interval has width one, and each value is located in the middle of an interval.

This histogram matches the supplied data. It consists of 7 adjacent bars with the x-axis split into intervals of 1 from 4 to 10. The heighs of the bars peak in the middle and taper symmetrically to the right and left.

The histogram displays a symmetrical distribution of data. A distribution is symmetrical if a vertical line can be drawn at some point in the histogram such that the shape to the left and the right of the vertical line are mirror images of each other. The mean, the median, and the mode are each seven for these data. In a perfectly symmetrical distribution, the mean and the median are the same. This example has one mode (unimodal), and the mode is the same as the mean and median. In a symmetrical distribution that has two modes (bimodal), the two modes would be different from the mean and median.

Similar questions