Physics, asked by iqra76, 1 year ago

In an electric shaver, the blade moves back and forth over a distance of 2mm .The motion is SHM with frequency 120 hz find maximum speed and acceleration of blades . ​

Answers

Answered by Anonymous
60

Question :

In an electric shaver, the blade moves back and forth over a distance of 2mm .The motion is SHM with frequency 120 hz find maximum speed and acceleration of blades .

Solution :

From the Question,

  • Total Displacement,D = 2 mm

  • Frequency,f = 120 Hz

Firstly,we need to calculate the amplitude of the blade

Amplitude is the maximum displacement from the mean position. Here,it would be half of the Total Displacement.

  • Amplitude,A = 1 mm

 \longrightarrow \:  \sf{A =  {10}^{ - 3}  \: mm}

Relationship between angular velocity and frequency,

 \boxed{ \boxed{ \sf{ \omega = 2\pi \: f}}}

Maximum Velocity

 \sf{ v =  \omega \: A } \\  \\  \longrightarrow \:  \sf{v = (2\pi \: f) \times A} \\  \\  \longrightarrow \:  \sf{v = 2 \times 3.14 \times 120 \times  {10}^{ - 3} } \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf{v = 0.75 \:  {ms}^{ - 1} }}}

Maximum Acceleration

 \sf{a =  {   \omega}^{2} A} \\  \\   \longrightarrow \:  \sf{a = (2\pi \: f) {}^{2}  \times A} \\  \\  \longrightarrow \:  \sf{a = 4 \times (3.14) {}^{2}  \times  {120}^{2}  \times  {10}^{ - 3} } \\  \\  \longrightarrow \:   \boxed{ \boxed{\sf{a = 5.7 \times  {10}^{2}   \: {ms}^{ - 2} }}}

Answered by Anonymous
35

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\small{\underline{\blue{\sf{Given :}}}}

  • Frequency (v) = 120 Hz
  • Distance = 2 mm = 2 × 10^(-3) m
  • Amplitude (A) = 1 × 10^(-3) m

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

We have formula :

\large \star {\boxed{\sf{V \: = \: A \: \omega}}} \\ \\ : \implies {\sf{V \: = \: A \: \times \: \dfrac{2 \pi}{T}}} \\  \\  \small : \implies {\sf{V \: = \: A \: 2 \pi \nu}} \\  \\ \small : \implies {\sf{V \: = \: 1 \: \times \:  10^{-3} \: \times \: 2 \: \times \: 3.14 \: \times \: 120}}  \\ \\ \small : \implies {\sf{V \: = \: 0.75}} \\ \\ \large {\boxed{\sf{Max. \: Velocity \: = \: 0.75 \: ms^{-1}}}}

\rule{200}{2}

And formula for Max. Acceleration is :

\large \star {\boxed{\sf{a \: = \: \omega^2 A}}} \\ \\ : \implies {\sf{a \: = \: (2 \pi \nu)^2 \: \times \:A}} \\ \\ \small : \implies {\sf{a \: = \: 2 \: \times \: (3.14)^2 \: \times \: (120)^2 \: \times \: 1 \: \times \: 10^{-3}}} \\ \\ \small : \implies {\sf{a \: = \: 5.7 \: \times \: 10^{2}}} \\ \\ \large {\boxed{\sf{Acceleration \: = \: 5.7 \: times \: 10^{2} \: ms^{-2}}}}

Similar questions