Math, asked by pervezmohammed02, 3 months ago

in an eqiulateral triangle PQR,S is a point on side QR such that QS =1/3 QR prove that 9 PS²=7 PQ²​

Answers

Answered by MysteriousMoonchild
7

Answer:

pt \:be \:  the \:  perpendicular \: from \: p \: on \: qr \:

hence \: qt \:  =  \frac{1}{2} qr

st = qr( \frac{1}{2 }  -  \frac{1}{3} ) =  \frac{1}{6} qr

 {ps}^{2}  =  {pt}^{2}  +  {st}^{2}

also \: pt = qt  \tan(60)

pt \:  =  \sqrt{3qt}

 {ps}^{2}  = 3  {qt}^{2}  +  \frac{ {qr}^{2} }{36}

 {ps}^{2}  =   \frac{3 {qr}^{2} }{4}  +   \frac{ {qr}^{2} }{36}

 {ps}^{2}  =  \frac{28 {qr}^{2} }{36}  =   \frac{7 {qr}^{2} }{9}

qr \:  =  \: pq

 {9 \: ps}^{2}  =  {7 \: pq}^{2}

Similar questions