Math, asked by anurukupaternabtc, 1 year ago

In an equilateral triangle ABC, AD is drawn perpendicular to BC meeting BC in A. Prove that AD^2=3BD^2.

Answers

Answered by friendwithdrisp67lvh
458
I have attached the solution here...you can check and if you like then please give an upvote cause this is the first answer i am uploading :)
Attachments:
Answered by hotelcalifornia
43

Answer:

Hence proved that \mathrm { AD } ^ { 2 } = 3 \mathrm { BD } ^ { 2 } in ∆ABC

To prove:

The value of \mathrm { AD } ^ { 2 } = 3 \mathrm { BD } ^ { 2 }

Solution:

Given that ∆ ABC and AD is perpendicular to BC i.e., AD ⊥ BC

Proof: Consider triangle ABD

\mathrm { AB } ^ { 2 } = \mathrm { AD } ^ { 2 } + \mathrm { BD } ^ { 2 }

(by using Pythagoras theorem)

\mathrm { BC } ^ { 2 } = \mathrm { AD } ^ { 2 } + \mathrm { BD } ^ { 2 } ( \mathrm { AB } = \mathrm { BC } )

Since all the sides in an equilateral triangle are equal.

Here,  

B C ^ { 2 } = B D ^ { 2 } + D C ^ { 2 }

Here, the perpendicular bisector bisects the line BC equally. Hence,

BD=DC

Thus,

\begin{array} { c } { B C ^ { 2 } = B D ^ { 2 } + B D ^ { 2 } = 2 B D ^ { 2 } } \\\\ { ( 2 B D ) ^ { 2 } = A D ^ { 2 } + B D ^ { 2 } } \\\\ { 4 B D ^ { 2 } = A D ^ { 2 } + B D ^ { 2 } } \\\\ { 4 B D ^ { 2 } - B D ^ { 2 } = A D ^ { 2 } } \\\\ { 3 B D ^ { 2 } = A D ^ { 2 } } \end{array}

Hence proved that 3 \mathrm { BD } ^ { 2 } = \mathrm { AD } ^ { 2 } in the given triangle ABC.

Attachments:
Similar questions