Math, asked by Anonymous, 5 months ago

In an equilateral triangle ABC,D is a point on BC such that CD:BC

= 2/3 . Prove that 9AD2 = 7 AB2​

Answers

Answered by Anonymous
8

Given :  \bf{BD = \frac{1}{3} BC}

To Prove :  \bf{9AD^2 =7AB^2}

Construction : Draw an Altitude AE such that E lies on BC and AE perpendicular to BC

Proof :  \bf{\triangle ABC} is an Equilateral triangle such that \bf{ \: AB=BC=AC}

 \Large{➥} In  \bf{ \triangle AEB}

By Pythagoras Theorem,

 \bf{  ↦AB^2 =AE^2+EB^2.....(1)}

 \Large{➥} In  \bf{\triangle AED}

By Pythagoras Theorem,

 \bf{ ↦ AD^2 =AE^2 +ED^2.....(2)}

From (1) and (2)

 \Large{\leadsto}  \bf{  AD^2=ED^2 +AB^2 −EB^2 }

Since,

 \bf{\implies EB= \frac{1}{2} BC= \frac{AB}{2} = \frac{3AB}{6}} and

⠀⠀⠀⠀⠀⠀⠀⠀ \bf{\implies ED= \frac{BC}{6} = \frac{AB}{6}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \bf{\implies AD^2= \frac{AB^2}{36} +AB^2 − \frac{9AB^2}{36}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \boxed{{\bf{\red{\implies \therefore 9AD^2 = 7AB^2}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ {\underline{\overline{\huge{\rm {\pink{\bold  {Hence \: Proved}}}}}}}

Attachments:
Answered by SweetCharm
0

GIVEN :

 \bf{BD = \frac{1}{3} BC}

To Prove :

 \bf{9AD^2 =7AB^2}

Construction : Draw an Altitude AE such that E lies on BC and AE perpendicular to BC

Proof :  \bf{\triangle ABC} is an Equilateral triangle such that \bf{ \: AB=BC=AC}

\sf{➥} In  \bf{ \triangle AEB}

By Pythagoras Theorem,

 \sf{  ↦AB^2 =AE^2+EB^2.....(1)}

 \sf{➥} In  \bf{\triangle AED}

By Pythagoras Theorem,

 \sf{ ↦ AD^2 =AE^2 +ED^2.....(2)}

From (1) and (2)

{\mapsto}  \sf{  AD^2=ED^2 +AB^2 −EB^2 }

Since,

 \sf{\implies EB= \dfrac{1}{2} BC= \dfrac{AB}{2} = \dfrac{3AB}{6}} and

⠀⠀⠀⠀⠀⠀⠀⠀ \sf{\implies ED= \dfrac{BC}{6} = \dfrac{AB}{6}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \sf{\implies AD^2= \dfrac{AB^2}{36} +AB^2 − \dfrac{9AB^2}{36}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ \boxed{{\sf{\pink{\implies \therefore 9AD^2 = 7AB^2}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ {\underline{\overline{\huge{\rm {\purple {Hence \: Proved}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions