Math, asked by srisowmya27872, 1 month ago

In an equilateral triangle ABC, D is a point on side BC such that BD=1/3BC. prove that 9ADsquare=7ABsquare​

Answers

Answered by OyeeKanak
60

Correct question:-

  • In an equilateral triangle ABC, D is a point on side BC such that BD=⅓BC. prove that 9AD²=7AB².

Given:-

  • Equilateral triangle ABC D is a point an BC.

To prove:-

  • 9AD²=7AB².

Construct:-

  • Lets draw AE _|_ BC.

Proof:-

All sides of equilateral triangle is equal.

 \sf \: AB=BC=AC

 \sf \: Let \: AB=BC=AC = x

Given

 \sf \: BD =  \frac{1}{3}BC

 \sf \: BD =  \frac{x}{3}

In ∆AEB and ∆AEC

  • AE=AE (common)
  • AB=AC. ( Both x as it is equilateral triangle)
  • ∠AEB= ∠AEC. ( both 90° as AE_|_ BC)

Hence by RHS congruency

∆AEB  \cong ∆AEC

  \sf \: \therefore \: BE= EC \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( By \:  CPCT )

  • So, BE=EC= 1/2 BC
  • BE=EC=x/2

So,

 \sf \: BE =  \frac{ x }{2}

 \sf \: BD + DE =  \frac{x}{2}

  \sf \: \frac{x}{3}  + DE =  \frac{x}{2}

 \sf \: DE =  \frac{x}{2}  -   \frac{x}{3}

 \sf \: DE =  \frac{3x - 2x}{6}

 \sf \: DE =  \frac{x}{6}

Using pythagoras theorem

⇒(Hypotenuse)²= (Height)²+ (Base)²

Now in right ∆ AEB

⇒AB²=AE²+(BE)²

 \sf \: ⇒x²= (AE)² +(\frac{x}{2})^2

 \sf \: ⇒x² =(AE)² + (\frac{x}{2})^2

 \sf \: ⇒x²-\frac{x}{4}^2=AE²

 \sf \: AE ^{2}  =  \frac{3x^{2}  }{4}  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

Similarly,

In right ∆AED

 \sf \: AD²=AE²+DE²

 \sf \: AD² = {3x}^{2}   + ( \frac{x  }{6} )^{2}

 \sf \: AD²= \frac{3 {x}^{2} }{4}  +  \frac{ {x}^{2} }{36}

 \sf \: AD²= \frac{( {3x}^{2}) \times 9 \times  {x}^{2}  }{36}

  \sf \: AD²= \frac{27 {x}^{2} +  {x}^{2}  }{36}

 \sf \: AD²= \frac{28 {x}^{2} }{36}

 \sf \: AD²= \frac{7 {x}^{2} }{9}

 \sf \: 9AD²=7 {x}^{2}

 \sf \: 9AD²=7AB ^{2}

Hence proved.

Attachments:
Answered by hotcupid16
112

⠀⠀⠀⠀⠀⠀⠀{\huge{\underbrace{\rm{Correct~Question}}}}

  • In an equilateral triangle ABC, D is a point on side BC such that BD=⅓BC. prove that 9AD²=7AB².

⠀⠀⠀⠀⠀⠀⠀⠀{\huge{\underbrace{\rm{Required~Answer}}}}

Given:-

  • A ∆ABC in which AB = BC = CA

  • D is a point on BC such that BD = ⅓BC.

To prove :-

  • 9AD² = 7AB² .

Construction :-

  • Draw AL ⊥ BC .

Proof :-

In right triangles ALB and ALC, we have

AB = AC \bf\pink{(Given)} \\

AL = AL \bf\red{(Common)} \\

Angle ALB = Angle ALC = 90°

∴ ∆ALB ≅ ∆ ALC

\bf\blue{ [ By ~RHS ~congruence~ criteria ~] .} \\

So,

BL = CL ( by CPCT)

Thus,

BD = ⅓BC

and

BL = ½BC .

Now,

In ∆ALB, ∠ALB = 90° .

∴ AB² = AL² + BL²..(1)

\bf\blue{  [ by~ Pythagoras'~ theorem~ ] .} \\

In ∆ALD , ∠ALD = 90° .

∴ AD² = AL² + DL²

\bf\blue{  [ by~ Pythagoras'~ theorem~ ] .} \\

⇒ AD² = AL² + ( BL - BD )² .

⇒ AD² = AL² + BL² + BD² - 2BL.BD .

⇒ AD² = ( AL² + BL² ) + BD² - 2BL.BD .

⇒ AD² = AB² + BD² - 2BL.BD. [ using (1) ]

⇒ AD² = BC² + ( ⅓BC )² - 2( ½BC ). ⅓BC .

[ ∵ AB = BC, BD = ⅓BC and BL = ½BC ] .

⇒ AD² = BC² + 1/9BC² - ⅓BC² .

⇒ AD² = 7/9BC² .

⇒ AD² = 7/9AB² [ ∵ BC = AB ] .

=> 9AD² = 7AB²

Hence, proved

Attachments:
Similar questions