In an equilateral triangle ABC, D is a point on side BC such that BD=1/3BC. prove that 9ADsquare=7ABsquare
Answers
Correct question:-
- In an equilateral triangle ABC, D is a point on side BC such that BD=⅓BC. prove that 9AD²=7AB².
Given:-
- Equilateral triangle ABC D is a point an BC.
To prove:-
- 9AD²=7AB².
Construct:-
- Lets draw AE _|_ BC.
Proof:-
All sides of equilateral triangle is equal.
Given
In ∆AEB and ∆AEC
- AE=AE (common)
- AB=AC. ( Both x as it is equilateral triangle)
- ∠AEB= ∠AEC. ( both 90° as AE_|_ BC)
Hence by RHS congruency
- So, BE=EC= 1/2 BC
- BE=EC=x/2
So,
Using pythagoras theorem
⇒(Hypotenuse)²= (Height)²+ (Base)²
Now in right ∆ AEB
⇒AB²=AE²+(BE)²
Similarly,
In right ∆AED
Hence proved.
⠀⠀⠀⠀⠀⠀⠀
- In an equilateral triangle ABC, D is a point on side BC such that BD=⅓BC. prove that 9AD²=7AB².
⠀⠀⠀⠀⠀⠀⠀⠀
Given:-
- A ∆ABC in which AB = BC = CA
- D is a point on BC such that BD = ⅓BC.
To prove :-
- 9AD² = 7AB² .
Construction :-
- Draw AL ⊥ BC .
Proof :-
In right triangles ALB and ALC, we have
AB = AC
AL = AL
Angle ALB = Angle ALC = 90°
∴ ∆ALB ≅ ∆ ALC
So,
BL = CL ( by CPCT)
Thus,
BD = ⅓BC
and
BL = ½BC .
Now,
In ∆ALB, ∠ALB = 90° .
∴ AB² = AL² + BL²..(1)
In ∆ALD , ∠ALD = 90° .
∴ AD² = AL² + DL²
⇒ AD² = AL² + ( BL - BD )² .
⇒ AD² = AL² + BL² + BD² - 2BL.BD .
⇒ AD² = ( AL² + BL² ) + BD² - 2BL.BD .
⇒ AD² = AB² + BD² - 2BL.BD. [ using (1) ]
⇒ AD² = BC² + ( ⅓BC )² - 2( ½BC ). ⅓BC .
[ ∵ AB = BC, BD = ⅓BC and BL = ½BC ] .
⇒ AD² = BC² + 1/9BC² - ⅓BC² .
⇒ AD² = 7/9BC² .
⇒ AD² = 7/9AB² [ ∵ BC = AB ] .
=> 9AD² = 7AB²