Math, asked by arpitaabhishek26, 4 months ago

In an equilateral triangle ABC,D is a point on side BC such that BD =1/3 BC.prove that 9AD square2 = 7AB square2​

Answers

Answered by ItzMeMukku
10

▶ Answer :-

▶ Step-by-step explanation :-

➡ Given :-

→ A ∆ABC in which AB = B.C = CA and D is a point on B C such that BD = ⅓BC.

➡ To prove :-

→ 9AD² = 7AB² .

➡ Construction :-

→ Draw AL ⊥ BC .

➡ Proof :-

In right triangles ALB and ALC, we have

AB = AC ( given ) and AL = AL ( common )

∴ ∆ALB ∆ ALC

So, BL = CL .

Thus, BD = ⅓BC and BL = ½BC .

In ∆ALB, ∠ALB = 90° .

∴ AB² = AL² + BL² (1)

In ∆ALD , ∠ALD = 90° .

∴ AD² = AL² + DL² .

⇒ AD² = AL² + ( BL - BD )² .

⇒ AD² = AL² + BL² + BD² - 2BL.BD .

⇒ AD² = ( AL² + BL² ) + BD² - 2BL.BD .

⇒ AD² = AB² + BD² - 2BL.BD. [ using (1) ]

⇒ AD² = BC² + ( ⅓BC )² - 2( ½BC ). ⅓BC .

[ ∵ AB = BC, BD = ⅓BC and BL = ½BC ] .

⇒ AD² = BC² + 1/9BC² - ⅓BC² .

⇒ AD² = 7/9BC² .

⇒ AD² = 7/9AB² [ ∵ BC = AB ] .

\huge \green{ \boxed{ \sf \therefore 9AD^{2} = 7AB^{2}}}

Hence, it is proved.

Attachments:
Similar questions