Math, asked by pawan6939, 1 year ago

In an equilateral triangle ABC , D is A point on side BC such that BD = 1/3BC.Prove that 9( AD) ^ 2= 7( AB) ^ 2

Answers

Answered by SmãrtyMohït
14
Here is your solution

Given that :-

In  Δ ABC is an equilateral triangle.

D is point on BC such that BD =BC.

To prove:-

 9 AD² = 7 AB²

Construction: Draw AE ⊥ BC.

Proof :-


In a ΔABC and ΔACE

AB = AC ( given)

AE = AE (common)

∠AEB = ∠AEC = (Right angle)

Hence ΔABC ≅ ΔACE (By RHS Creation)

Again,

BE = EC (By C.P.C.T)

BE = EC = BC²

In a right angled ΔADE

AD²= AE2 + DE² ---(1)

In a right angled ΔABE

AB² = AE² + BE² ---(2)

From equation (1) and (2) ;

 =) AD²  - AB² =  DE² - BE².

 =) AD²  - AB² = (BE – BD)² - BE².

 = ) AD²  - AB² = (BC / 2 – BC/3)² – (BC/2)²

 = AD2  - AB2 = ((3BC – 2BC/6)² – (BC/2)² 

 = AD²  - AB² = (BC² / 36 – BC2 / 4 )

( we know that In a equilateral triangle, All sides are equal to each other)

AB = BC = AC

 = ) AD²= AB² + AB²/ 36 – AB² / 4

 = )AD² = (36AB² + AB²– 9AB²) / 36

 = ) AD² = (28AB²) / 36

=) AD² = (7AB²) / 9

= ) 9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎ ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎proved

Hope it helps you

Answered by Anonymous
0

Answer:


Step-by-step explanation:

Given: ΔABC is an equilateral triangle. D is point on BC such that BD =BC.


To prove: 9 AD2 = 7 AB2


Construction: Draw AE ⊥ BC.


Proof ;-


Considering on Triangles which are given below;-



In a ΔABC and ΔACE


AB = AC ( given)


AE = AE (common)


∠AEB = ∠AEC = (Right angle)



∴ ΔABC ≅ ΔACE



By RHS Creition

∴ ΔABC ≅ ΔACE


Again,


BE = EC (By C.P.C.T)


BE = EC = BC 2


In a right angled ΔADE


AD2 = AE2 + DE2 ---(1)


In a right angled ΔABE


AB2 = AE2 + BE2 ---(2)


From equation (1) and (2) ;


 =) AD2  - AB2 =  DE2 - BE2 .


 =) AD2  - AB2 = (BE – BD)2 - BE2 .


 = ) AD2  - AB2 = (BC / 2 – BC/3)2 – (BC/2)2 


 = AD2  - AB2 = ((3BC – 2BC)/6)2 – (BC/2)2 


 = AD2  - AB2 = BC2 / 36 – BC2 / 4



( In a equilateral triangle, All sides are equal to each other)


AB = BC = AC


 = ) AD2 = AB2 + AB2 / 36 – AB2 / 4


 = )AD2 = (36AB2 + AB2– 9AB2) / 36


 = ) AD2 = (28AB2) / 36




 =) AD2 = (7AB2) / 9


 = ) 9AD2 = 7AB2 ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎

‎Hence, 9AD2 = 7AB2 


Read more on Brainly.in - https://brainly.in/question/2173657#readmore

Similar questions