Math, asked by radheshnath, 1 year ago

In an equilateral triangle ABC , D is a point on side BC, such that BD =1/3 BC. Prove that 9AD square = 7 AB square.
Solve this by taking LHS or RHS..

Answers

Answered by tanishqsoni2k17
1

Answer: Given ABC is an equilateral triangle, BD = 1/3BC

Let AB = BC = AC = "a"  ----------------------(since equilateral triangle has all sides equal)

CONSTRUCTION: Draw AL perpendicular to BC.

We also know that in an equilateral triangle ,perpendicular drawn from one of it's vertex to another side ,bisects the side.

⇒BL = LC                               -------------------(1.)

Also given that,

BD = 1/3BC = 1/3a

⇒CD = 2/3 BC =2/3a

Also,

BL = 1/2 BC   -----------------------------(by 1.)

BL =1/2a

Also,

DL = BL - BD

⇒DL = a/2 - a/3 = a/6 -----------------------------A.

IN TRIANGLE ALD,

AD² = AL² + LD²    (pythagoras theorem)      --------------------------B.

IN TRIANGLE ALB,

AB² = a² = AL² + LB²  ------------------------C.

⇒AL² = AB² - LB² ---------------------D.

Putting the relations in B. we get,

AD² = a² - a²/4 +a²/36  = 36a² - 9a² + a²/36       (AFTER LCM)

⇒AD² = 28a²/36 = 7a²/9

⇒9AD² = 7a²

Or,

9AD² = 7AB²           (SINCE , a² = AB² = AC² = BC²)

HENCE PROVED!!!!!!

HOPE THIS HELPS ...


tanishqsoni2k17: Please IF IT HELPS, MARK AS BRAINLIEST
Answered by gopal25062003
0

Answer:construction ,(i) draw AE ⊥BC (ii) join AD

IN ΔAEB and AEC,

AB=AC                                                                           ( ABC IS EQUILATERAL Δ)

∠AEB=∠AEC                                                                 ( EACH EQUAL TO 90° )  

AE=AE                                                                           ( COMMON )

Δ AEB≅ ΔAEC                                                               (RHS)

⇒ BE=EC                                                                      (CPCT)

NOW,  

BD=1/3BC , DC=2/3BC AND BE=EC=1/2BC

SINCE ∠C=60°. Therefore ADC is acute triangle

⇒ AD²=AC²+DC²-2DC×EC

   AD²=AC²+2/3BC²-2×2/3BC×1/2BC                            ( DC=2/3BC ,  EC=1/2BC )                              

   AD²=AC²+4/9 BC²-2/3BC²

   AD²=AB²+4/9AB²-2/3AB²                                           ( AB=AC=BC )

   AD²=9AB²+4AB²-6AB²/9=7/9 AB²

   AD²=7/9 AB²

    9AD²=7 AB²

IN ΔAEB and AEC,

     AB=AC                                                              ( ABC IS EQUILATERAL Δ)

 ∠AEB=∠AEC                                                          (  EACH EQUAL TO 90°  )                                                      

    AE=AE                                                                 ( COMMON )

Δ AEB≅ ΔAEC                                                           (RHS)

⇒   BE=EC                                                              (CPCT)

NOW,

BD=1/3BC  , DC=2/3BC AND BE=EC=1/2BC

SINCE

Step-by-step explanation:

Similar questions