Math, asked by arunsanjutha, 1 year ago

In an equilateral triangle ABC, D is a point on the side BC such that 1 BD BC. 3  Prove that 9AD2 = 7AB2

Answers

Answered by nikitasingh79
36
In equilateral∆ ABC . Given D is a point on side BC. BD= ⅓(BC)(GIVEN)
Draw a line AE Perpendicular to BC.
In a ΔABE and ΔACE
AB = AC ( Given) (equilateral∆)
AE = AE ( common)
∠AEB = ∠AEC = 90°
ΔABC ≅ ΔACE ( by RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
BD= ⅓(BC)(GIVEN)
DE=BE-BD
In a right angled ∆ ADE
AD² = AE² + DE² ---------(1)
In a right angled ∆ ABE
AB²= AE² + BE² ---------(2)
From eq (1) and (2)
AD² - AB² = DE² - BE².
AD² - AB² = (BE – BD)² - BE² .
AD² - AB² = (BC/2 – BC/3)² – (BC/2)²
AD² - AB² = ((3BC – 2BC)/6)² – (BC/2)2
AD² - AB² = BC² / 36 – BC² / 4
AD²= AB² + AB² / 36 - AB² / 4
[In a equilateral triangle ΔABC, AB = BC = CA]
AD² = (36AB² + AB²– 9AB²) / 36
AD²= (28AB²)/36
AD² = (7AB²) / 9
9AD² = 7AB²

HOPE THIS WILL HELP YOU.....
Attachments:
Answered by SmãrtyMohït
31

Here is your solution


Given:-


ABC is an equilateral triangle.


D is point on BC .


so BD =BC.


To prove:-


 9 AD² = 7 AB²


Construction: Draw AE ⊥ BC.


Proof ;-


Considering on Triangles which are given below;-


In a ΔABC and ΔACE


AB = AC ( given)


AE = AE (common)


∠AEB = ∠AEC = (Right angle)


∴ ΔABC ≅ ΔACE 


By RHS Creation


∴ ΔABC ≅ ΔACE 


Again,


BE = EC (By C.P.C.T)


BE = EC = BC²


In a right angled ΔADE


AD²= AE2 + DE² ---(1)


In a right angled ΔABE


AB² = AE² + BE² ---(2)


From equation (1) and (2) ;


 =) AD²  - AB² =  DE² - BE².


 =) AD²  - AB² = (BE – BD)² - BE².


 = ) AD²  - AB² = (BC / 2 – BC/3)² – (BC/2)²


 = AD2  - AB2 = ((3BC – 2BC/6)² – (BC/2)² 


 = AD²  - AB² = (BC² / 36 – BC2 / 4 )


( In a equilateral triangle, All sides are equal to each other)


AB = BC = AC


 = ) AD²= AB² + AB²/ 36 – AB² / 4


 = )AD² = (36AB² + AB²– 9AB²) / 36


 = ) AD² = (28AB²) / 36


=) AD² = (7AB²) / 9


Cross Multiplication here,


= ) 9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎

‎Hence,


9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎proved


Hope it helps you

Similar questions