In an equilateral triangle ABC, D is a point on the side BC such that
1
BD BC.
3
Prove that 9AD2
= 7AB2
Answers
Answered by
28
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD2 = AE2 + DE2 ---------(1)
In a right angled triangle ABE
AB2 = AE2 + BE2 ---------(2)
From equ (1) and (2) we obtain
⇒ AD2 - AB2 = DE2 - BE2 .
⇒ AD2 - AB2 = (BE – BD)2 - BE2 .
⇒ AD2 - AB2 = (BC / 2 – BC/3)2 – (BC/2)2
⇒ AD2 - AB2 = ((3BC – 2BC)/6)2 – (BC/2)2
⇒ AD2 - AB2 = BC2 / 36 – BC2 / 4 ( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD2 = AB2 + AB2 / 36 – AB2 / 4
⇒ AD2 = (36AB2 + AB2– 9AB2) / 36
⇒ AD2 = (28AB2) / 36
⇒ AD2 = (7AB2) / 9
9AD2 = 7AB2 .
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD2 = AE2 + DE2 ---------(1)
In a right angled triangle ABE
AB2 = AE2 + BE2 ---------(2)
From equ (1) and (2) we obtain
⇒ AD2 - AB2 = DE2 - BE2 .
⇒ AD2 - AB2 = (BE – BD)2 - BE2 .
⇒ AD2 - AB2 = (BC / 2 – BC/3)2 – (BC/2)2
⇒ AD2 - AB2 = ((3BC – 2BC)/6)2 – (BC/2)2
⇒ AD2 - AB2 = BC2 / 36 – BC2 / 4 ( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD2 = AB2 + AB2 / 36 – AB2 / 4
⇒ AD2 = (36AB2 + AB2– 9AB2) / 36
⇒ AD2 = (28AB2) / 36
⇒ AD2 = (7AB2) / 9
9AD2 = 7AB2 .
Answered by
0
Answer:
Check your answer please
Attachments:
Similar questions