IN AN EQUILATERAL TRIANGLE ABC, D IS A POINT ON THE SIDE BC SUCH THAT BD=1÷3 PROVE THAT 9AD^2=7AB^2
Answers
Answered by
1
Construction: Draw AE ⊥ BC.
Proof :
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD² = AE² + DE² ---------(1)
In a right angled triangle ABE
AB² = AE² + BE² ---------(2)
From equ (1) and (2) we obtain
⇒ AD² - AB² = DE² - BE².
⇒ AD² - AB² = (BE – BD)² - BE² .
⇒ AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
⇒ AD² - AB² = ((3BC – 2BC)/6)² – (BC/2)²
⇒ AD² - AB² = BC² / 36 – BC² / 4 ( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD² = AB² + AB² / 36 – AB² / 4
⇒ AD² = (36AB²+ AB²– 9AB²) / 36
⇒ AD² = (28AB²) / 36
⇒ AD² = (7AB²) / 9
9AD² = 7AB².
Hence, proved.
Hope this helps you !!
# Dhruvsh
Proof :
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD² = AE² + DE² ---------(1)
In a right angled triangle ABE
AB² = AE² + BE² ---------(2)
From equ (1) and (2) we obtain
⇒ AD² - AB² = DE² - BE².
⇒ AD² - AB² = (BE – BD)² - BE² .
⇒ AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
⇒ AD² - AB² = ((3BC – 2BC)/6)² – (BC/2)²
⇒ AD² - AB² = BC² / 36 – BC² / 4 ( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD² = AB² + AB² / 36 – AB² / 4
⇒ AD² = (36AB²+ AB²– 9AB²) / 36
⇒ AD² = (28AB²) / 36
⇒ AD² = (7AB²) / 9
9AD² = 7AB².
Hence, proved.
Hope this helps you !!
# Dhruvsh
Answered by
12
Here is your solution
Given that :-
In Δ ABC is an equilateral triangle.
D is point on BC such that BD =BC.
To prove:-
9 AD² = 7 AB²
Construction: Draw AE ⊥ BC.
Proof :-
In a ΔABC and ΔACE
AB = AC ( given)
AE = AE (common)
∠AEB = ∠AEC = (Right angle)
Hence ΔABC ≅ ΔACE (By RHS Creation)
Again,
BE = EC (By C.P.C.T)
BE = EC = BC²
In a right angled ΔADE
AD²= AE2 + DE² ---(1)
In a right angled ΔABE
AB² = AE² + BE² ---(2)
From equation (1) and (2) ;
=) AD² - AB² = DE² - BE².
=) AD² - AB² = (BE – BD)² - BE².
= ) AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
= AD2 - AB2 = ((3BC – 2BC/6)² – (BC/2)²
= AD² - AB² = (BC² / 36 – BC2 / 4 )
( we know that In a equilateral triangle, All sides are equal to each other)
AB = BC = AC
= ) AD²= AB² + AB²/ 36 – AB² / 4
= )AD² = (36AB² + AB²– 9AB²) / 36
= ) AD² = (28AB²) / 36
=) AD² = (7AB²) / 9
= ) 9AD² = 7AB² proved
Hope it helps you
Given that :-
In Δ ABC is an equilateral triangle.
D is point on BC such that BD =BC.
To prove:-
9 AD² = 7 AB²
Construction: Draw AE ⊥ BC.
Proof :-
In a ΔABC and ΔACE
AB = AC ( given)
AE = AE (common)
∠AEB = ∠AEC = (Right angle)
Hence ΔABC ≅ ΔACE (By RHS Creation)
Again,
BE = EC (By C.P.C.T)
BE = EC = BC²
In a right angled ΔADE
AD²= AE2 + DE² ---(1)
In a right angled ΔABE
AB² = AE² + BE² ---(2)
From equation (1) and (2) ;
=) AD² - AB² = DE² - BE².
=) AD² - AB² = (BE – BD)² - BE².
= ) AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
= AD2 - AB2 = ((3BC – 2BC/6)² – (BC/2)²
= AD² - AB² = (BC² / 36 – BC2 / 4 )
( we know that In a equilateral triangle, All sides are equal to each other)
AB = BC = AC
= ) AD²= AB² + AB²/ 36 – AB² / 4
= )AD² = (36AB² + AB²– 9AB²) / 36
= ) AD² = (28AB²) / 36
=) AD² = (7AB²) / 9
= ) 9AD² = 7AB² proved
Hope it helps you
Similar questions
Science,
8 months ago
English,
8 months ago
Biology,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago