in an equilateral triangle abc,dis apoint onside bc such that bd=1/3bc .prove that9ad square= 7absquare
Answers
Answered by
5
Plzzz SUBSCRIBE my YouTube channel (BanarasiiiINDIA) if this answer is helpful for you.This is my YouTube channel Link-https://www.youtube.com/channel/UC27NLinpXVunbzVQ0vdHabQ
Given: In an equilateral triangle ΔABC. The side BC is trisected at D such that BD = (1/3) BC.
To prove: 9AD2 = 7AB2
Construction: Draw AE ⊥ BC.
Proof :
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD2 = AE2 + DE2 ---------(1)
In a right angled triangle ABE
AB2 = AE2 + BE2 ---------(2)
From equ (1) and (2) we obtain
⇒ AD2 - AB2 = DE2 - BE2 .
⇒ AD2 - AB2 = (BE – BD)2 - BE2 .
⇒ AD2 - AB2 = (BC / 2 – BC/3)2 – (BC/2)2
⇒ AD2 - AB2 = ((3BC – 2BC)/6)2 – (BC/2)2
⇒ AD2 - AB2 = BC2 / 36 – BC2 / 4 ( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD2 = AB2 + AB2 / 36 – AB2 / 4
⇒ AD2 = (36AB2 + AB2– 9AB2) / 36
⇒ AD2 = (28AB2) / 36
⇒ AD2 = (7AB2) / 9
9AD2 = 7AB2 .
Don't forget to SUBSCRIBE my YouTube channel (BanarasiiiINDIA) if this answer is helpful for you.This is my YouTube channel Link-https://www.youtube.com/channel/UC27NLinpXVunbzVQ0vdHabQ
Thank You!
Attachments:
Answered by
5
Step-by-step explanation:
Given :-
A ∆ABC in which AB = BC = CA and D is a point on BC such that BD = ⅓BC.
To prove :-
9AD² = 7AB² .
Construction :-
Draw AL ⊥ BC .
Proof :-
In right triangles ALB and ALC, we have
AB = AC ( given ) and AL = AL ( common )
∴ ∆ALB ≅ ∆ ALC [ By RHS axiom ] .
So, BL = CL .
Thus, BD = ⅓BC and BL = ½BC .
In ∆ALB, ∠ALB = 90° .
∴ AB² = AL² + BL² .......(1) [ by Pythagoras' theorem ] .
In ∆ALD , ∠ALD = 90° .
∴ AD² = AL² + DL² . [ by Pythagoras' theorem ] .
⇒ AD² = AL² + ( BL - BD )² .
⇒ AD² = AL² + BL² + BD² - 2BL.BD .
⇒ AD² = ( AL² + BL² ) + BD² - 2BL.BD .
⇒ AD² = AB² + BD² - 2BL.BD. [ using (1) ]
⇒ AD² = BC² + ( ⅓BC )² - 2( ½BC ). ⅓BC .
[ ∵ AB = BC, BD = ⅓BC and BL = ½BC ] .
⇒ AD² = BC² + 1/9BC² - ⅓BC² .
⇒ AD² = 7/9BC² .
⇒ AD² = 7/9AB² [ ∵ BC = AB ] .
⇒ 9 AD² = 7 AB²
Hence proved
Similar questions
Math,
8 months ago
Math,
8 months ago
Chemistry,
1 year ago
Psychology,
1 year ago
Social Sciences,
1 year ago