In an equilateral triangle ABC if the coordinates of B and C are (3, 0) and (-3, 0) then the vertex A will be?
please answer with steps
Answers
Answer:
Step-by-step explanation:
here we have to find the coordinates vertex of A. since A is in the Y axis. the x coordinate is 0. so, vertex of A is (0,y).now we have find the value of y. given the triangle is equilateral. hence
distance of BC= distance of AB
=> (3--3)^2+(0-0)^2=(3-0)^2+(0-y)^2
=> 36= 9+ y^2
=> y^2= 25
=> y =5
hence coordinate vertex of A is (0,5)
hope this helps you.
Given vertices of B and C of an equilateral triangle are (3,0) , (-3,0)
Let coordinates of A be (x₃,y₃)
Since the given vertex is equilateral length of every side (or) Distance between the vertices is equal .
Distance between the two points (x₁,y₁) , (x₂,y₂) is given by ,
Distnace between the Vertex B (3,0) and C (-3,0) is
This mean the distance between all vertices is 3 units
So distance between AB = Distance between BC = Distance between CA = 6 units
Distance between C(-3,0) and A(x₃,y₃) is
Distance between A(x₃,y₃) and B(3,0) is
Since in both equations LHS is equal RHS can be equated,
From eq(1) ,
Squaring on both sides ,
∴ The coordinates of vertex A are (0,3√3)