Math, asked by lomash2980, 1 year ago

In an equilateral triangle d is a pt. on the side bc such that bd:dc=1:2, prove that 9ad^2=7ab^2

Answers

Answered by nitthesh7
1
Given:   In an equilateral triangle ΔABC. The side BC is trisected at D such 

that BD:DC = 1:2 ⇒ BD = 1/3 BC

To prove:  9AD²  = 7AB² 

Construction:  Draw AE ⊥ BC.

Proof :

In a ΔABC and ΔACE

AB = AC ( Given)

AE = AE ( common)

∠AEB = ∠AEC = 90°

∴ ΔABC ≅ ΔACE ( For RHS criterion)

BE = EC (By C.P.C.T)

BE = EC = BC / 2

In a right angled triangle ADE

AD² = AE² + DE² ---------(1)

In a right angled triangle ABE

AB² = AE² + BE² ---------(2)

From equations (1) and (2), we obtain

⇒ AD²  - AB² =  DE² - BE²

⇒ AD²  - AB² = (BE – BD)² - BE² 

⇒ AD²  - AB² = (BC / 2 – BC/3)² – (BC/2)² 

⇒ AD²  - AB² = ((3BC – 2BC)/6)² – (BC/2)² 

⇒ AD²  - AB² = BC² / 36 – BC² / 4 

( In a equilateral triangle ΔABC, AB = BC = CA)

⇒ AD² = AB² + AB² / 36 – AB² / 4

⇒ AD² = (36AB² + AB²– 9AB²) / 36

⇒ AD² = (28AB²) / 36

⇒ AD² = (7AB²) / 9

⇒ 9AD² = 7AB²
._________________________________________________________

☺☺☺ Hope this Helps ☺☺☺
Attachments:

nitthesh7: if u find it as most helpful pls mark it as brainliest
Answered by SmãrtyMohït
16
Here is your solution

Given:-

 ΔABC is an equilateral triangle. D is point on BC such that BD =BC.

To prove:-

 9 AD² = 7 AB²

Construction: Draw AE ⊥ BC.

Proof ;-

Considering on Triangles which are given below;-

In a ΔABC and ΔACE

AB = AC ( given)

AE = AE (common)

∠AEB = ∠AEC = (Right angle)

∴ ΔABC ≅ ΔACE 

By RHS Creation

∴ ΔABC ≅ ΔACE 

Considering On Question;-

Again,

BE = EC (By C.P.C.T)

BE = EC = BC²

In a right angled ΔADE

AD²= AE2 + DE² ---(1)

In a right angled ΔABE

AB² = AE² + BE² ---(2)

From equation (1) and (2) ;

 =) AD²  - AB² =  DE² - BE².

 =) AD²  - AB² = (BE – BD)² - BE².

 = ) AD²  - AB² = (BC / 2 – BC/3)² – (BC/2)²

 = AD2  - AB2 = ((3BC – 2BC/6)² – (BC/2)² 

 = AD²  - AB² = (BC² / 36 – BC2 / 4 )

( In a equilateral triangle, All sides are equal to each other)

AB = BC = AC

 = ) AD²= AB² + AB²/ 36 – AB² / 4

 = )AD² = (36AB² + AB²– 9AB²) / 36

 = ) AD² = (28AB²) / 36

=) AD² = (7AB²) / 9

Cross Multiplication here,

= ) 9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎



‎Hence, 9AD² = 7AB² ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎proved

Hope it helps you
Similar questions