In an equilateral triangle d is a pt. on the side bc such that bd:dc=1:2, prove that 9ad^2=7ab^2
Answers
Answered by
1
Given: In an equilateral triangle ΔABC. The side BC is trisected at D such
that BD:DC = 1:2 ⇒ BD = 1/3 BC
To prove: 9AD² = 7AB²
Construction: Draw AE ⊥ BC.
Proof :
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD² = AE² + DE² ---------(1)
In a right angled triangle ABE
AB² = AE² + BE² ---------(2)
From equations (1) and (2), we obtain
⇒ AD² - AB² = DE² - BE²
⇒ AD² - AB² = (BE – BD)² - BE²
⇒ AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
⇒ AD² - AB² = ((3BC – 2BC)/6)² – (BC/2)²
⇒ AD² - AB² = BC² / 36 – BC² / 4
( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD² = AB² + AB² / 36 – AB² / 4
⇒ AD² = (36AB² + AB²– 9AB²) / 36
⇒ AD² = (28AB²) / 36
⇒ AD² = (7AB²) / 9
⇒ 9AD² = 7AB²
._________________________________________________________
☺☺☺ Hope this Helps ☺☺☺
that BD:DC = 1:2 ⇒ BD = 1/3 BC
To prove: 9AD² = 7AB²
Construction: Draw AE ⊥ BC.
Proof :
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD² = AE² + DE² ---------(1)
In a right angled triangle ABE
AB² = AE² + BE² ---------(2)
From equations (1) and (2), we obtain
⇒ AD² - AB² = DE² - BE²
⇒ AD² - AB² = (BE – BD)² - BE²
⇒ AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
⇒ AD² - AB² = ((3BC – 2BC)/6)² – (BC/2)²
⇒ AD² - AB² = BC² / 36 – BC² / 4
( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD² = AB² + AB² / 36 – AB² / 4
⇒ AD² = (36AB² + AB²– 9AB²) / 36
⇒ AD² = (28AB²) / 36
⇒ AD² = (7AB²) / 9
⇒ 9AD² = 7AB²
._________________________________________________________
☺☺☺ Hope this Helps ☺☺☺
Attachments:
nitthesh7:
if u find it as most helpful pls mark it as brainliest
Answered by
16
Here is your solution
Given:-
ΔABC is an equilateral triangle. D is point on BC such that BD =BC.
To prove:-
9 AD² = 7 AB²
Construction: Draw AE ⊥ BC.
Proof ;-
Considering on Triangles which are given below;-
In a ΔABC and ΔACE
AB = AC ( given)
AE = AE (common)
∠AEB = ∠AEC = (Right angle)
∴ ΔABC ≅ ΔACE
By RHS Creation
∴ ΔABC ≅ ΔACE
Considering On Question;-
Again,
BE = EC (By C.P.C.T)
BE = EC = BC²
In a right angled ΔADE
AD²= AE2 + DE² ---(1)
In a right angled ΔABE
AB² = AE² + BE² ---(2)
From equation (1) and (2) ;
=) AD² - AB² = DE² - BE².
=) AD² - AB² = (BE – BD)² - BE².
= ) AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
= AD2 - AB2 = ((3BC – 2BC/6)² – (BC/2)²
= AD² - AB² = (BC² / 36 – BC2 / 4 )
( In a equilateral triangle, All sides are equal to each other)
AB = BC = AC
= ) AD²= AB² + AB²/ 36 – AB² / 4
= )AD² = (36AB² + AB²– 9AB²) / 36
= ) AD² = (28AB²) / 36
=) AD² = (7AB²) / 9
Cross Multiplication here,
= ) 9AD² = 7AB²
Hence, 9AD² = 7AB² proved
Hope it helps you
Given:-
ΔABC is an equilateral triangle. D is point on BC such that BD =BC.
To prove:-
9 AD² = 7 AB²
Construction: Draw AE ⊥ BC.
Proof ;-
Considering on Triangles which are given below;-
In a ΔABC and ΔACE
AB = AC ( given)
AE = AE (common)
∠AEB = ∠AEC = (Right angle)
∴ ΔABC ≅ ΔACE
By RHS Creation
∴ ΔABC ≅ ΔACE
Considering On Question;-
Again,
BE = EC (By C.P.C.T)
BE = EC = BC²
In a right angled ΔADE
AD²= AE2 + DE² ---(1)
In a right angled ΔABE
AB² = AE² + BE² ---(2)
From equation (1) and (2) ;
=) AD² - AB² = DE² - BE².
=) AD² - AB² = (BE – BD)² - BE².
= ) AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
= AD2 - AB2 = ((3BC – 2BC/6)² – (BC/2)²
= AD² - AB² = (BC² / 36 – BC2 / 4 )
( In a equilateral triangle, All sides are equal to each other)
AB = BC = AC
= ) AD²= AB² + AB²/ 36 – AB² / 4
= )AD² = (36AB² + AB²– 9AB²) / 36
= ) AD² = (28AB²) / 36
=) AD² = (7AB²) / 9
Cross Multiplication here,
= ) 9AD² = 7AB²
Hence, 9AD² = 7AB² proved
Hope it helps you
Similar questions