Math, asked by anagha1259, 1 year ago

In an equilateral triangle d lies on bc such that bc =3bd prove that 9ad2=7ab2

Answers

Answered by nitthesh7
5
Given:   In an equilateral triangle ΔABC. The side BC is trisected at D such 

that BC = 3BD

To prove:  9AD²  = 7AB² 

Construction:  Draw AE ⊥ BC.

Proof :

In a ΔABC and ΔACE

AB = AC ( Given)

AE = AE ( common)

∠AEB = ∠AEC = 90°

∴ ΔABC ≅ ΔACE ( For RHS criterion)

BE = EC (By C.P.C.T)

BE = EC = BC / 2

In a right angled triangle ADE

AD² = AE² + DE² ---------(1)

In a right angled triangle ABE

AB² = AE² + BE² ---------(2)

From equations (1) and (2), we obtain

⇒ AD²  - AB² =  DE² - BE²

⇒ AD²  - AB² = (BE – BD)² - BE² 

⇒ AD²  - AB² = (BC / 2 – BC/3)² – (BC/2)² 

⇒ AD²  - AB² = ((3BC – 2BC)/6)² – (BC/2)² 

⇒ AD²  - AB² = BC² / 36 – BC² / 4 

( In a equilateral triangle ΔABC, AB = BC = CA)

⇒ AD² = AB² + AB² / 36 – AB² / 4

⇒ AD² = (36AB² + AB²– 9AB²) / 36

⇒ AD² = (28AB²) / 36

⇒ AD² = (7AB²) / 9

⇒ 9AD² = 7AB²
._________________________________________________________

☺☺☺ Hope this Helps ☺☺☺

Attachments:

nitthesh7: if u find it as most helpful pls mark it as brainliest
Similar questions