Math, asked by riyabhargav2321, 10 months ago

In an equilateral triangle of side 24cm find the length of altitude​

Answers

Answered by pvsdeepak2005
2

Answer:

Step-by-step explanation:

In a equilateral triangle length of altitude =\sqrt{side^{2}+(side/2)^{2}  }

hens;

altitude=\sqrt{24^{2}+12^{2}}

=12\sqrt{3}cm

Answered by rey1860
2

Answer: 12\sqrt{3} cm

Step-by-step explanation:

Let ABC be an equilateral triangle of side 24 cm and AD is altitude which is also a perpendicular bisector of side BC

Hence       BD = \frac{BC}{2} = \frac{24}{2} = 12

∴                AD = \sqrt{((AD)^{2} - (BD)^{2}  }

                        = \sqrt{(24)^{2} - (12)^{2}  }

                        = \sqrt{576 - 144}  

                        =  \sqrt{432}

                      AD  = 12\sqrt{3} cm

The length of the altitude is 12\sqrt{3} cm

Similar questions