Math, asked by devasahu4609, 11 months ago

In an equilateral triangle, the ratio of the radii of incircle, circumcircle and excircle is

Answers

Answered by pulakmath007
6

SOLUTION

TO DETERMINE

In an equilateral triangle, the ratio of the radii of in-circle , circumcircle and ex-circle

EVALUATION

Since the triangle is an equilateral triangle

So every angle = 60°

Let A, B, C be the angles

 \displaystyle \sf{A = B = C =  \frac{\pi}{3} }

Let

R = Radius of the circumcircle

r = Radius of the in-circle

 \sf{r_1 = Radius  \: of  \: the \:  ex  circle}

So

 \displaystyle \sf{ r  = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}

  \displaystyle \sf{  \implies \: r  = 4R \sin \frac{\pi}{6} \sin \frac{\pi}{6}\sin \frac{\pi}{6}}

  \displaystyle \sf{  \implies \: r  = 4R  \times  \frac{1}{2}  \times  \frac{1}{2}  \times  \frac{1}{2} }

  \displaystyle \sf{  \implies \: r  =  \frac{4R}{8}  }

  \displaystyle \sf{  \implies \: r  =  \frac{R}{2}  }

Again

 \displaystyle \sf{ r_1  = 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}}

 \displaystyle \sf{  \implies \: r_1  = 4R \cos \frac{\pi}{6} \cos \frac{\pi}{6} \sin \frac{\pi}{6}}

 \displaystyle \sf{  \implies \: r_1  = 4R  \times  \frac{ \sqrt{3} }{2} \times  \frac{ \sqrt{3} }{2}   \times  \frac{1}{2} }

 \displaystyle \sf{  \implies \: r_1  =    \frac{3R}{2}  }

Hence the required ratio of the radii of in-circle , circumcircle and ex-circle

 \displaystyle \sf{  = r:   R: r_1  }

 \displaystyle \sf{  = \frac{R}{2}:   R: \frac{3R}{2}    }

 \displaystyle \sf{  = 1:   2: 3    }

FINAL ANSWER

The required ratio of the radii of in-circle , circumcircle and ex-circle = 1 : 2 : 3

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

2. If 270° <teta< 360°and cos teta=1/4 find teta/2

https://brainly.in/question/29137185

Similar questions