Math, asked by beherarajashree, 1 month ago

in an equilateral triangle with area 64√3unit, all the 3altitude are drawn. what is the distance of any of the vertex from the point of intersection of all the 3altitude of the triangle??​

Answers

Answered by BrainlyAnswerer0687
5

\bf{\underline{\underline{\bigstar\bigstar \: Solution : }}}\\

\:\:

\footnotesize{Area of equilateral triangle = \frac{\sqrt{3}}{4} \(side)^2}\\

\footnotesize{\implies 64\sqrt{3} = \frac{1.72}{4} \(side)^2}\\

\footnotesize{\implies 64 \times 1.72 = 0.43 \times \(side)^2}\\

\footnotesize{\implies \frac{110.08}{0.43} =  \(side)^2}\\

\footnotesize{\implies 256 =  \(side)^2}\\

\footnotesize{\implies 16 =  side}\\

\:\:

\footnotesize{height of equilateral triangle = \frac{area}{side}}\\

\footnotesize{\implies height of equilateral triangle = \frac{64\sqrt{3}}{16}}\\

\footnotesize{\implies height of equilateral triangle = \frac{110.08}{16}}\\

\footnotesize{\implies height of equilateral triangle = 6.88}\\

\:\:

\footnotesize{required distance = \frac{2}{3} \times 6.88}\\

\footnotesize{required distance = 2 × 2.29}\\

\footnotesize{required distance = 4.58}\\

\bf{\footnotesize{\therefore required distance = 4.58}}\\

Similar questions