Math, asked by yogeshkumar9577, 9 months ago

In an examination, a person scores 117 marks more than the passing marks. The passing marks in the examination is 36% of the total marks. If he got 75% of the total marks, what was the total marks in the examination?

Answers

Answered by mddilshad11ab
59

\huge{\underline{\green{\rm{Solution:}}}}

\sf{Given=\begin{cases}\:The\: passing\:marks=36\%\\The\:man\:got\:75\%=Total\:marks\end{cases}}

\large{\underline{\red{\rm{To\:Find:}}}}

  • \sf{Total\: Mark's\:in\:the\: examination}

\large{\underline{\red{\rm{Let:}}}}

  • \sf{Total\: Mark's\:in\:the\: examination\:be\:x}

\small{\underline{\purple{\rm{As\: per\: the\: question:}}}}

\small{\underline{\red{\rm{The\: passing\: mark's+117\: mark\: more\: than\: passing\:mark=Total\: mark's\: secured\:by\:the\:man:}}}}

\sf\orange{\implies x*36\%+117=x*75\%}

\rm{\implies x*\dfrac{36}{100}+117=x*\dfrac{75}{100}}

\rm{\implies \dfrac{36x}{100}+117=\dfrac{75x}{100}}

\rm{\implies \dfrac{75x}{100}-\dfrac{36x}{100}=117}

\rm{\implies \dfrac{75x-36x}{100}=117}

\rm{\implies \dfrac{39x}{100}=117}

\rm{\implies \cancel{39}x=\cancel{117}*100}

\rm{\implies x=3*100}

\sf\green{\implies x=300}

Hence,

\sf\pink{\implies Total\: mark's\:in\: examination=300}

Answered by BrainlyAnswerer0687
9

✰✰|| Given ||✰✰

  • No. of marks got more than passing marks = 117

  • The passing marks in examination = 36%

  • Marks he got = 75%

✰✰|| To Find ||✰✰

  • Total marks in examination

|| Solution ||

difference between passing marks and marks he got = 75% - 36%

117 = 39%

117/39 = 1%

3 = 1%

Total marks in examination = 100 × 3

Total marks in examination = 300

Total marks in examination is 300

Similar questions