Math, asked by harsh2675, 1 year ago

in an examination a student requires 40% of total marks to pass if Rupa get fit 185 marks and failed by 15 marks find the total marks

Answers

Answered by aryan7274
0
Let x be total marks
Scored marks+Failed mark = passing marks
185+15=200
if 200 is x-(40%of x)
then 200=(100x-40x)/100
200=60x/100
(200×100)/60=x
2000=x

Hope you understood it.
Answered by AnIntrovert
37

\mathfrak{\large{\underline{\underline{Answer :}}}}

The total marks are 500.

\mathfrak{\large{\underline{\underline{Step-by-step\: explanation}}}}

\textsf{\underline{\underline{Given : }}}

Students needs = 40% to pass

Rula gets = 185 marks

Fails by = 15 marks

\textsf{\underline{\underline{To find :}}}

The total marks

\textsf{\underline{\underline{Solution : }}}

\textsf{Let the Total Marks be as x }

As Rula failed by 15, the marks she scored when added by 15 makes the passing marks.

\green{\boxed{\green{\boxed{\red{\sf{40\% \: of \: x = 185 + 15}}}}}}

\begin{lgathered}\begin{lgathered}\sf{\longrightarrow} \: 40\% \: of \: x = 185 + 15 \\ \\ \sf{\longrightarrow} \: \frac{40}{100} \times x = 185 + 15 \\ \\ \sf{\longrightarrow} \: \frac{40x}{100} = 200 \\ \\ \sf{\longrightarrow} \:40x = 200 \times 100 \\ \\ \sf{\longrightarrow} \:40x = 20000 \\ \\ \sf{\longrightarrow} \:x = \frac{20000}{40} \\ \\ \sf{\longrightarrow} \:x = 500\end{lgathered}\end{lgathered}

\textsf{Total Marks = 500 }

\therefore\textsf{The total marks are 500. }

Similar questions