In an experiment measurements of the velocity of an object are 342,338,318,322.The mean absolute error in the measurement is?
Answers
Answered by
4
measurements of velocity of an object are 342, 338, 318 , 322.
first of all, find mean !
mean = sum of observations/total number of observations
= (342 + 338 + 318 + 322)/4
= 330.
so,![\overline{x}=330 \overline{x}=330](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D%3D330)
so,![|\Delta{x_1}|=\overline{x}-x_1=|330-342|=12 |\Delta{x_1}|=\overline{x}-x_1=|330-342|=12](https://tex.z-dn.net/?f=%7C%5CDelta%7Bx_1%7D%7C%3D%5Coverline%7Bx%7D-x_1%3D%7C330-342%7C%3D12)
![|\Delta{x_2}|=\overline{x}-x_2=|330-338|=8 |\Delta{x_2}|=\overline{x}-x_2=|330-338|=8](https://tex.z-dn.net/?f=%7C%5CDelta%7Bx_2%7D%7C%3D%5Coverline%7Bx%7D-x_2%3D%7C330-338%7C%3D8)
![|\Delta{x_1}|=\overline{x}-x_1=|330-318|=12 |\Delta{x_1}|=\overline{x}-x_1=|330-318|=12](https://tex.z-dn.net/?f=%7C%5CDelta%7Bx_1%7D%7C%3D%5Coverline%7Bx%7D-x_1%3D%7C330-318%7C%3D12)
![|\Delta{x_1}|=\overline{x}-x_1=|330-322|=8 |\Delta{x_1}|=\overline{x}-x_1=|330-322|=8](https://tex.z-dn.net/?f=%7C%5CDelta%7Bx_1%7D%7C%3D%5Coverline%7Bx%7D-x_1%3D%7C330-322%7C%3D8)
so,
first of all, find mean !
mean = sum of observations/total number of observations
= (342 + 338 + 318 + 322)/4
= 330.
so,
so,
so,
Answered by
2
"Given:
Velocities = 342, 338, 318, 322
Total number of readings = 4
Sum of all the readings = (342 + 338 + 318 + 322) = 1320
Mean of the readings
Deviation of the first reading comparing to the mean = |342 – 330 | = 12
Deviation of the second reading comparing to the mean = |338 – 330 | = 8
Deviation of the third reading comparing to the mean = |330 – 318 | = 12
Deviation of the fourth reading comparing to the mean = |330 – 322 | = 8
Mean of the deviation
Mean absolute error "
Similar questions
History,
8 months ago
Computer Science,
8 months ago
Physics,
1 year ago
Math,
1 year ago
Biology,
1 year ago