Physics, asked by BrainlyRV, 9 months ago

In an experiment the refractive index of glass was observed to be

1.45, 1.56 , 1.54, 1.44, 1.54 & 1.53

Calculate :
(i) Mean value of refractive index
(ii) Mean absolute error
(iii) fractional error
(iv) Percentage error
(v) express the result in terms of absolute error and percentage error....


Steps needed....​

Answers

Answered by AntonyLigin
7

I hope the answers are right. l have a doubt in (v) the answer can also be 1.51 + 3%

Attachments:
Answered by Unni007
75

Given,

The refractive index of glass was observed to be :

1.45 , 1.56 , 1.54 , 1.44 , 1.54 , 1.53

____________________

(i) Mean value of refractive index

\sf \mu_m=\dfrac{1.45+1.56+1.54+1.44+1.54+1.53}{6}

\implies\sf \mu_m=\dfrac{9.06}{6}

\implies\sf \mu_m=1.51

____________________

(ii) Mean absolute error

  • \sf \Delta\mu_1=|1.45-1.51|=0.06
  • \sf \Delta\mu_2=|1.56-1.51|=0.5
  • \sf \Delta\mu_3=|1.54-1.51|=0.3
  • \sf \Delta\mu_4=|1.44-1.51|=0.07
  • \sf \Delta\mu_5=|1.54-1.51|=0.3
  • \sf \Delta\mu_6=|1.53-1.51|=0.2

\sf\Delta\mu_m=\dfrac{0.06+0.5+0.3+0.070.3+0.2}{6}

\implies\sf \Delta\mu_m=\dfrac{0.26}{6}

\implies\sf \Delta\mu_m=0.0433

\implies\sf \Delta\mu_m\approx 0.04

____________________

(iii) fractional error

\sf \dfrac{\Delta\mu_m}{\mu_m}=\dfrac{0.04}{1.51}

\implies\sf \dfrac{\Delta\mu_m}{\mu_m}=0.02649

\implies\sf \dfrac{\Delta\mu_m}{\mu_m}=0.03

____________________

(iv) Percentage error

\sf\dfrac{\Delta\mu_m}{\mu_m}\times 100=0.03\times 100

\implies\sf\dfrac{\Delta\mu_m}{\mu_m}\times 100=3\%

____________________

(v)

Result in terms of Absolute Error

\sf Absolute\:Error=\mu_m\pm \Delta\mu_m

\implies\sf Absolute\:Error=1.51\pm 0.04

Result in terms of Percentage Error

\sf Percentage\:Error={\mu_m}\pm\dfrac{\Delta\mu_m}{\mu}\times100

\implies\sf Percentage\:Error=1.51\pm3\%

____________________

Answers

(i) Mean value of refractive index = 1.51

(ii) Mean absolute error  = 0.04

(iii) Fractional error  = 0.03

(iv) Percentage error  = 3%

(v) Result in terms of absolute error = 1.51 ± 0.04

    Result in terms of percentage error = 1.51 ± 3%

\huge\boxed{\rm Hope\:it\:Helps}

Similar questions