in an isoceles triangle abc right angled at a the value of 2sin B cos C
Answers
Answered by
0
Answer:
ΔABC, 2sinCcosA=sinB [given]
⇒sin(C+A)+sin(C−A)=sinB
[∵2sinAcosB=sin(A+B)+sin(A−B)]
⇒sin(180
o
−B)+sin(C−A)=sinB
[∵∠A+∠B+∠C=180
o
]
⇒sinB+sin(C−A)=sinB
⇒sin(C−A)=0=sin0
o
⇒C−A=0
⇒C=A
Hence, ΔABC is an isosceles triangle.
Answered by
0
Answer:
In the triangle ABCABC. A+B+C=πA+B+C=π. So, A=π−(B+C)A=π−(B+C). So, sinA=sin(π−(B+C))=sinπcos(B+C)−cosπsin(B+C)=sin(B+C)=sinBcosC+cosBsinCsinA=sin(π−(B+C))=sinπcos(B+C)−cosπsin(B+C)=sin(B+C)=sinBcosC+cosBsinC.
We are given that this is equal to 2sinBcosC2sinBcosC.
Hence 2sinBcosC=sinBcosC+cosBsinC⟹sinBcosC=cosBsinC2sinBcosC=sinBcosC+cosBsinC⟹sinBcosC=cosBsinC,
Similar questions