In an isosceles ΔABC, AB = AC. If ∠A = 20°, then
a = 2b sin10°
a = 4b sin10°
a3 + b3 = 3ab2
a3 + b3 = 3ac2
Answers
Answered by
0
∵∠A=20
0
∴∠B=∠C=80
0
⇒△ABC is isosceles.
⇒AB=AC
⇒c=b
Using sine rule,
∴
sin20
a
=
sin80
b
=
sin80
c
Rightarrow
sin20
a
=
sin(90−10)
b
=
sin80
c
⇒
sin20
a
=
cos10
b
=
cos10
c
⇒a=
cos10
bsin20
=
cos10
b.2sin10cos10
=2bsin10
0
∴a
3
+b
3
=(2bsin10)
3
+b
3
=8b
3
sin
3
10+b
3
=b
3
(8sin
3
10+1)
=b
3
(2(4sin
3
10+1))
Using the trigonometric formula sin3A=3sinA−4sin
3
A or 4sin
3
A=3sinA−sin3Aabove we get
=b
3
(2(3sin10−sin30)+1)
=b
3
(6sin10−2×
2
1
+1)
=b
3
(6sin10)
=3b
2
(2bsin10)
We know that a=2bsin10
∴a
3
+b
3
=3b
2
(2bsin10)(from above)
=3b
2
a=3c 2a (as b=c)
Similar questions
English,
1 month ago
English,
1 month ago
Accountancy,
1 month ago
Computer Science,
3 months ago
Chemistry,
3 months ago