Math, asked by pratiknpriti7978, 5 months ago

In an isosceles right-angled triangle, the square of the hypotenuse is 200 cm square. Find the length of each side of the triangle.​

Answers

Answered by SUNNY90850
6

In an isosceles right angled triangle, the two sides on the right angle are equal

Let the equal side be a

Hence, hypotenuse of the isosceles right angled triangle of side a

 \sf  \red{ \implies}  \sqrt{ {a}^{2}  +  {a}^{2} }  =  \sqrt{2a}

In the isosceles right triangle, the base and

height = a

{ \tt{ Hence,  \: area  \: of \:  the triangle =  \frac{1}{2} \times base \times  }}

height=

 \sf{ \tt{ \frac{1}{2}  \times a \times a = 200 \: SQ \: cm.}} \\  \sf{ \tt{ \implies {a}^{2} = 400 }} \\  \sf{ \tt{ \implies a = 20cm.}} \\  \sf{ \tt{and \: the \: hypotenuse =  \sqrt{2a}  = 20 { \sqrt{ 2}cm. }}}

Similar questions