In an isosceles triangle ABC: AB=AC=10cm and BC =18cm FIND, i) sin[sq ] B+cos[sq ]C ii)tan[sq ]C-sec[sq ]B+2.
Answers
( i ) sin²B + cos²C = 1.
( ii ) tan²C - sec²B + 2 = 1.
Given
In an isosceles ΔABC,
Where, AB = AC = 10 cm
BC = 18 cm
To find the values for, ( i ) sin²B + cos²C
( ii ) tan²C - sec²B + 2
Steps :
(a) Find altitude of corresponding angles
(b) Find the area of ΔABC by using Heron's formula
(c) Find the area of triangle
(d) Use pythagoras theorem
(e) Find trignometric values
Substitution :
(a) Finding the altitude of corresponding angles :
Semi-perimeter, s =
Here, a = 10 cm
b = 10 cm
c = 18 cm
s = =
s = 19 cm
Altitude = 19 cm.
(b) Finding the area of ΔABC by using Heron's formula :
Area of ΔABC =
=
=
=
= 9√19 cm²
(c) Finding the area of triangle :
Area of ΔABC = × b × h
Base, BC = 18 cm
Height, AD = 19 cm
Area of ΔABC = × 18 × AD
= 9√19 cm ( AD = √19 cm )
(d) Using pythagoras theorem :
In ΔABD, AB² = AD² + BD²
10² = (√19)² + BD²
100 = 19 + BD²
BD² = 19 - 100
BD² = - 81
BD = √(-81)
BD = 9 cm
Where as, BD = 9 cm and CD = 9 cm.
(e) Finding trignometric values :
( i ) sin²B + cos²C
=
=
=
sin²B + cos²C = 1.
( ii ) tan²C - sec²B + 2
=
=
=
=
= -1 + 2
tan²C - sec²B + 2 = 1.
To learn more...
brainly.in/question/497570