In an isosceles triangle ABC, AB = AC = 25 cm, BC = 14 cm, Calculate the altitude from A on BC.
Answers
SOLUTION :
Given :
AB = AC = 25 cm and BC = 14 cm
In ∆ABD and ∆ACD,
∠ADB = ∠ADC [Each 90°]
AB = AC [Each 25 cm]
AD = AD [Common]
∆ABD ≅ ∆ACD [By RHS condition]
∴ BD = CD = 7 cm [By c.p.c.t]
In ∆ADB,
AB² = AD² + BD²
[By using Pythagoras theorem ]
25² = AD² + 7²
AD² = 625 − 49
AD² = 576
AD = √576
AD = 24 cm
Hence, the altitude AD on BC is 24 cm.
HOPE THIS ANSWER WILL HELP YOU ..
Answer:
Step-by-step explanation:
Given :-
AB = AC = 25 cm and BC = 14 cm
To Find :-
In this triangle altitude from A to BC is AD, we know that isosceles altitude on non equal sides also median.
BD = CD = 14/2 = 7 cm
In ∆ADB,
By applying Pythagoras theorem, we get
AB² = AD² + BD²
⇒ 25² = AD² + 7²
⇒ AD² = 625 − 49
⇒ AD² = 576
⇒ AD = √576
⇒ AD = 24 cm
Hence, the altitude AD on BC is 24 cm.