In an isosceles triangle ABC, AB = AC, ZBAC = 108° and AD trisects <BAC (divides in
BD
2:1) and BD > DC. The ratio is (Point D lies on side BC)
DC
Answers
Answered by
0
Given,
AB=AC, ∠BAC=108
∘
So ∠ABC=∠ACB=
2
180−∠BA
=
2
180−108
=36
∘
In ΔABD
sin36
BD
=
sin108
AB
−(1)
In Δ ACD
sin72
CD
=
sin72
AC
⟹CD=AC
⟹CD=AC=AB
eqs.(1)
⟹
sin36
BD
=
sin108
CD
⟹
CD
BD
=
sin108
sin36
CD
BD
=
3
2
Similar questions
India Languages,
2 months ago
Math,
4 months ago
Math,
4 months ago
India Languages,
10 months ago
India Languages,
10 months ago
India Languages,
10 months ago