⭐In an isosceles triangle ABC of area 42 cm^2,AB=AC.if the base BC =(4x+5)cm and the altitude AD=X cm then find the equal sides of the triangle, correct to two decimal places. ⭐
❌NO SPAM❌
CLASS 10 CHAPTER :QUADRATIC EQUATIONS
BEST ANSWER WILL BE MARKED AS BRAINLIEST!
Answers
Formulas to be applied : -
where s is the semi - perimeter and a , b and c are the sides.
Solution : -
Given,
Length of base BC = ( 4x + 5 ) cm
Length of altitude( height ) AD = x cm
Area of the triangle = 42 cm^2
On the basis of the formula given above
⇒ 42 = [ ( 4x + 5 )x ] / 2
⇒ 84 = 4x^2 + 5x
⇒ 4x^2 + 5x - 84 = 0
⇒ 4x^2 + ( 21 - 16 )x - 84 = 0
⇒ 4x^2 - 16x + 21x - 84 = 0
⇒ 4x( x - 4 ) + 21( x - 4 ) = 0
⇒ ( x - 4 )( 4x + 21 ) = 0
∴ x = 4 OR x = - 21 / 4
Sides can't be negative, x = 4
Now,
Base ( BC ) = 4x + 5
= 4( 4 ) + 5
= 16 + 5
= 21 cm
Let the length of AB ( or AC ) be a cm,
So, semi - perimeter = ( 21 + a + a ) / 2
= ( 21 + 2a ) / 2
Therefore the length of equal sides is 26.5 cm
Answer:
11.24cm..............