In an isosceles triangle ABC with AB = AC and BD is perpendicular to AC. Prove that
BD^2 - CD^2 = 2CD × AD
VERY URGENT PLZZ
Answers
Answered by
7
Given: AB=AC , BD _|_ AC
To Prove: BD2 -DC2 = 2DC* AD
Proof: BC2 =CD2 + BD2 [PYTHA. THEO.]
=> BD2 =BC2-CD2
AB2 = AD2+ BD2 [PYTHA. THEO.]
=> BD2 =AB2-AD2
=[ AB+AD ] * [ AB-AD ] {A2-B2 = [A+B] [A-B] }
=[ AC+AD ] [ AC-AD] { Since AB=AC}
=[ AC+AD ] * DC
=AC*DC + AD*DC
=[AD+DC]*DC + AD*DC
=AD*DC+DC2+AD*DC
BD2 =2AD*DC+DC2
BD2 -DC2 = 2DC* AD
=> BD²-DC² = 2CD×AF
To Prove: BD2 -DC2 = 2DC* AD
Proof: BC2 =CD2 + BD2 [PYTHA. THEO.]
=> BD2 =BC2-CD2
AB2 = AD2+ BD2 [PYTHA. THEO.]
=> BD2 =AB2-AD2
=[ AB+AD ] * [ AB-AD ] {A2-B2 = [A+B] [A-B] }
=[ AC+AD ] [ AC-AD] { Since AB=AC}
=[ AC+AD ] * DC
=AC*DC + AD*DC
=[AD+DC]*DC + AD*DC
=AD*DC+DC2+AD*DC
BD2 =2AD*DC+DC2
BD2 -DC2 = 2DC* AD
=> BD²-DC² = 2CD×AF
Saksham36:
explain the following steps plzz AC×DC+AD×DC =[AD+DC]DC + AD×DC
Similar questions