Math, asked by divya392, 1 year ago

in an isosceles triangle length of each congruent side is 25 cm and the length of the base is 14 cm ad is the median find the distance between vertex opposite to base and centroid G ​

Answers

Answered by gparasuram606
3

Answer:

16

Step-by-step explanation:

let the triangle be ABC ,AB=AC=25 ,BC=14

construct a median from AB to a point D at BC now AD will also be perpendicular to BC because median and altitude of an isosceles triangle are equal

now AD^2 = AB^2 - BD^2        by pythogorous theorem

==> AD^2 = 576

==> AD = 24

let G be the centroid

AG = 2/3*AD

==> AG = 2/3*24

==> AG= 16

note : distance of the vertex to centroid is equal to 2/3length of the corresponding median


gparasuram606: pls mark this as brainliest
gparasuram606: please mark this as brainliest
Similar questions