In an triangle ABC prove that (a+b+c) (tanA/2+tanB/2)= 2c cot C/2
Answers
Answered by
1
ANSWER
2s = a+b+c
We know tan (A/2)
= √(s-b)(s-c)/s(s-a)
And tan (B/2) = √(s-a) (s-c)/s(s-b)
Now, (a+b+c) (tanA/2) + tan(B/2) = (a+b+c)(√(s-b) (s-c)/s(s-a)
√(s-a) (s-c)/s(s-b) = 2s √s-c/s (√s-b/s-a + √s-a/s-b
= 2s√(s-a) (s-c) (s-b+s-a/√(s-b) (s-a)
= 2c√s(s-c)/(s-a)(s-b)
2ctan(c/2)
Similar questions