Math, asked by manaramsuthar2021, 2 months ago

in angle ABC angle B 5cm if AC 5cm BC 3cm AB 4cm find all the six trigonometric identities related to angle A​

Answers

Answered by satwikattigeri
0

Step-by-step explanation:

here is the answer ok it will help you

Attachments:
Answered by Ladylaurel
6

Appropriate Question :-

In triangle ABC, is right angled at B. If AC = 5cm, BC = 3cm and AB = 4cm. Find all the six trigonometric identities related to angle A.

Answer :-

FIGURE

  • Refer the attachment.

Firstly, we know, There are six trigonometric identities :-

\sf{sine (sin \: A ) = \dfrac{Perpendicular}{Hypotenuse} \implies \dfrac{BC}{AC}}

\sf{cosine (cos \:  A) = \dfrac{Base}{Hypotenuse} \implies \dfrac{AB}{AC}}

\sf{tangent (tan \:  A) = \dfrac{Perpendicular}{Base} \implies \dfrac{BC}{AB}}

\sf{cotangent (cot \:  A) = \dfrac{Base}{Perpendicular} \implies \dfrac{AB}{BC}}

\sf{secant (sec \:  A) = \dfrac{Hypotenuse}{Base} \implies \dfrac{AC}{AB}}

\sf{cosecant (cosec \: A ) = \dfrac{Hypotenuse}{Perpendicular} \implies \dfrac{AC}{BC}}

We have, Given

  • AC = 5cm
  • BC = 3cm
  • AB = 4cm

 \\

According the question,

 \\  \\

  • sine ( sin A )

\sf{ \longrightarrow \: sine (sin \: A ) = \dfrac{BC}{AC}}

\sf{ \longrightarrow \: \dfrac{BC}{AC}}

\sf{ \longrightarrow \: \dfrac{3}{5} \:  \:  \:  \: \bigstar}

 \\

  • cosine ( cos A )

\sf{ \longrightarrow \: cosine (cos \: A ) = \dfrac{AB}{AC}}

\sf{ \longrightarrow \:  \dfrac{AB}{AC}}

\sf{ \longrightarrow \: \dfrac{4}{5} \:  \:  \:  \: \bigstar}

 \\

  • tangent ( tan A )

\sf{ \longrightarrow \: tangent (tan \:  A) = \dfrac{BC}{AB}}

\sf{ \longrightarrow \:  \dfrac{BC}{AB}}

\sf{ \longrightarrow \: \dfrac{3}{4} \:  \:  \:  \: \bigstar}

 \\

  • cotangent ( cot A )

\sf{ \longrightarrow \: cotangent (cot \:  A) = \dfrac{AB}{BC}}

\sf{ \longrightarrow \:  \dfrac{AB}{BC}}

\sf{ \longrightarrow \: \dfrac{4}{3} \:  \:  \:  \: \bigstar}

 \\

  • secant ( sec A )

\sf{ \longrightarrow \: secant (sec \:  A) =  \dfrac{AC}{AB}}

\sf{ \longrightarrow \:  \dfrac{AC}{AB}}

\sf{ \longrightarrow \: \dfrac{5}{4} \:  \:  \:  \: \bigstar}

 \\

  • cosecant ( cosec A )

\sf{ \longrightarrow \: cosecant (cosec \: A ) = \dfrac{AC}{BC}}

\sf{ \longrightarrow \:  \dfrac{AC}{BC}}

\sf{ \longrightarrow \: \dfrac{5}{3} \:  \:  \:  \: \bigstar}

Attachments:
Similar questions