Math, asked by missr3146, 1 month ago


In angle PQR, right angled at Q, PR + QR = 25 cm, and PQ = 5cm. Determine the values of sin P, cos P.​

Answers

Answered by mathdude500
3

 \red{\large\underline{\sf{Given- }}}

A triangle PQR, right angled at Q, PR + QR = 25 cm, and PQ = 5cm.

 \purple{\large\underline{\sf{To\:Find - }}}

The values of sinP and cosP

 \green{\large\underline{\sf{Solution-}}}

Given that,

A triangle PQR, right angled at Q, PR + QR = 25 cm, and PQ = 5cm.

Let assume that, QR = x cm

So, PR = 25 - x cm

Now, In right triangle PQR, using Pythagoras Theorem,

\rm :\longmapsto\: {PR}^{2} =  {PQ}^{2} +  {QR}^{2}

\rm :\longmapsto\: {(25 - x)}^{2} =  {x}^{2} +  {5}^{2}

\rm :\longmapsto\: 625  + {x}^{2} - 50x =  {x}^{2} +  25

\rm :\longmapsto\:  - 50x =  - 625 +  25

\rm :\longmapsto\:  - 50x =  - 600

\rm :\longmapsto\:  5x = 60

\bf\implies \:x = 12

Hence, we have now

In triangle PQR

  • PQ = 5 cm

  • QR = x = 12 cm

  • PR = 25 - x = 25 - 12 = 13 cm

So,

\rm :\longmapsto\:sinP = \dfrac{QR}{PR} = \dfrac{12}{13}

and

\rm :\longmapsto\:cosP = \dfrac{QP}{PR} = \dfrac{5}{13}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Similar questions