Math, asked by VanshGupta99, 1 year ago

In angle PQR, right-angled at Q, PR+QR=25cm and PQ=5cm. Determine the values of sin P, cos P and tan P.

Answers

Answered by Anonymous
75

Answer

The required values are

sinP = 12/13

cosP = 5/13

tanP = 12/5

Given

  • ∆PQR is a right angled triangle
  • PR + QR = 25cm and PQ = 5cm

To Find

The values of sinP , cosP and tanP

Formula to be used

  • Pythagorean theorem :  \sf{perpendicular{}^{2}  + base ^{2} = hypotenus^{2}  }
  •     \sin  \sf\theta =  \sf \frac{perpendicular}{hypotenus}
  •  \cos \theta =  \sf \frac{base}{hypotenus}
  •  \tan \theta =  \sf \frac{ perpendicular}{base}

Solution

Using the Pythagorean theorem we have :

 \sf{PQ ^{2}  + QR {}^{2}  =PR {}^{2}  } \\  \implies \sf{PQ ^{2} =PR {}^{2} - QR {}^{2}  } \\  \sf \implies {(5)}^{2}  = (PR  + QR)(PR   -   QR) \\  \sf \implies25 = 25(PR   -   QR)   \\  \implies \sf PR   -  QR = 1 \:  \: .........(1)

Again , we are already given :

 \sf{PR    +  QR = 25}...........(2)

Adding (1) and (2) we have :

 \sf{PR  +  QR + PR   -   QR = 25 + 1} \\  \implies \sf2PR = 26 \\  \implies \sf{PR = 13}

Putting the value of PR in (2) we have :

 \sf \implies 13+ QR = 25 \\  \implies  \sf{QR = 25 - 13} \\  \sf \implies QR =12

Thus , the sides are :

PQ = 5cm

QR = 12cm

PR = 13cm

So Now required trigonometric functions are :

  \sf \sin(P) = \frac{QR}{PR}  \\ \implies  \sf\sin(P) =  \frac{12}{13}

  \sf\cos(P) =  \frac{PQ}{PR}  \\  \sf \implies \cos(P) =  \frac{5}{13}

  \sf\tan(P) =  \frac{QR}{PQ}  \\  \implies \sf{ \tan(P)  =  \frac{12}{5} }

Answered by Anonymous
51

 \tt \huge{Answer}

_______________________________

Question:

In angle PQR, right-angled at Q, PR+QR=25cm and PQ=5cm. Determine the values of sin P, cos P and tan P.

______________________________________

 \sf{Given}

 \rm{PR+QR = 25}

then

According to Question:

 \rm{ :  \: ⟹let \: QR \: be \: x}

 \rm{⟹PR+QR = 25}

 \rm{⟹PR = 25 - QR}

 \rm{⟹PR = 25 - x}

________________________________

Now

 \tt{given \: right \: angled \: PQR}

 \rm{⟹use \: the \: pythagoras \: theorem}

 \bf{ \boxed{ \green{ \tt{( {hypotenuse})^{2} =  ({height})^{2} +  ({base})^{2} \: }}}}

then

 \tt{ {PR}^{2} =  {PQ}^{2} + {QR}^{2}}

 \tt{⟹( {25 - x)}^{2} =  {5}^{2}  +  {x}^{2}}

 ⟹\tt{( {25})^{2} +  {x}^{2} - 2 \times 25 \times x = 25 +  {x}^{2}}

 \tt{⟹625 +  {x}^{2} - 50x = 25 +  {x}^{2}}

 \tt{⟹625 +  {x}^{2} - 50x - 25 -  {x}^{2} = 0}

 \tt{⟹ {x}^{2} +  {x}^{2} - 50x + 625 - 25 = 0}

 \tt{⟹ - 50 + 600 = 0}

 \tt{⟹ - 50x =  - 600}

 \tt{⟹x =  \frac{ - 600}{ - 50}}

 \tt{⟹x = 12}

so,

 \rm{QR = 12}

 \rm{PR = 25 - x}

 \rm{ = 25 - 12}

 \rm{ = 13cm}

  • QR is 12cm

  • PR is 13cm

__________________________________

Now Determine the values of sin P, cos P and tan P.

Sinp

 \sf{sinp =  \frac{side \: opp \: to \: angle \: p}{hyp}}

 \sf{⟹ sinp =  \frac{QR}{PR}}

 \sf{⟹sinp =  \frac{12}{13}}

__________________________

cosp

 \sf{⟹cosp =  \frac{side \: adj \: to \: angle \: p}{hyp}}

 \sf{⟹cosp =  \frac{PQ}{PR} }

 \sf{⟹cosp =  \frac{5}{13}}

_____________________________

tanp

 \sf{⟹tanp =  \frac{side \: opp \: to \: p}{side \: adj \: to \: p}}

 \sf{⟹tanp =  \frac{QR}{PQ}}

 \sf{⟹tanp =  \frac{12}{15}}

 \sf{⟹tanp =  \frac{12}{5}}

___________________________

so,

⟹ \rm{tanp =  \frac{sinp}{cosp}}

 \rm{⟹tanp \frac{ \frac{12}{13} }{ \frac{5}{13}}}

 \rm{⟹tanp =  \frac{12}{5}}

I hope it's help uh

Similar questions