In any ΔABC, if a². b², c² are are in A.P.. then prove that cot A, cot B, cot C are in A.P.
Answers
Answer:
Proved
Step-by-step explanation:
In any ΔABC, if a². b², c² are are in A.P.. then prove that cot A, cot B, cot C are in A.P.
a². b², c² are are in A.P
=> 2b² = a² + c² - eq 1
in ΔABC
a² = b² + c² - 2bcCosA
b² = a² + c² - 2acCosB
c² = a² + b² - 2abCosC
putting these values in eq 1
=> 2(a² + c² - 2acCosB) = (b² + c² - 2bcCosA) + (a² + b² - 2abCosC)
=> 2a² + 2c² - 4acCosB = 2b² + a² + c² - 2bcCosA - 2abCosC
=> a² + c² - 2b² - 4acCosB = - 2bcCosA - 2abCosC
2b² = a² + c² => a² + c² - 2b² = 0
=> - 4acCosB = - 2bcCosA - 2abCosC
using CotxSinx = Cosx & dividing by - 2
=> 2acCotBSinB = bcCotASinA + abCotCSinC - eq 2
in ΔABC
a/SinA = b/SinB = c/SinC = K
=> SinA = a/K , SinB = b/K SinC = c/K
putting in eq 2
2acCotBb/K = bcCotAa/K + abCotCc/K
=> (abc/K)2CotB = (abc/K)CotA + (abc/k)CotC
=>(abc/K)2CotB = (abc/k) (CotA + cotC)
Cancelling abc/k from both sides
=> 2CotB = CotA + CotB
Hence cot A, cot B, cot C are in A.P.
QED