In any ∆ABC, Prove that - T-114
a^3sin(B-C)+b^3sin(C-A)+c^3sin
Answers
Answered by
4
Correct Question
a³sin(B - C) + b³sin(C - A) + c³sin(A - B) = 0
Here,
Assume
a = ZsinA
b = ZsinB
c = ZsinC
Therefore,
⇒ a³sin(B - C) = Z³sin³A × sin(B - C)
= Z³sin²A × sinA × sin(B - C)
= Z³sin²A[sin{π - (B + C)}sin(B - C)]
Therefore,
⇒ A + (B + C) = π
= Z³sin²A[sin(B + C)sin(B - C)]
= Z³sin²A × (sin²B - sin²C)
Similarly,
b³sin(C - A) = Z³sin²B(sin²C - sin²A)
And,
c³sin(A - B) = Z³sin²C(sin²A - sin²B)
Therefore,
a³sin(B - C) + b³sin(C - A) + c³sin(A - B)
= Z³sin²A(sin²B - sin²C) + Z³sin²B(sin²C - sin²A) + Z³sin²C(sin²A - sin²B)
= 0
Similar questions