Math, asked by SolemnMusic, 10 days ago

In any △ ABC , prove that
 \rm \: a(b \cos C \: - c \cos B) =  {b}^{2}  -  {c}^{2}

Answers

Answered by Anonymous
43

 \bigstar \  \underline{\underline{ \bf{Question}}}

In any △ ABC , prove that

\sf \: a(b \cos C \: - c \cos B) = {b}^{2} - {c}^{2}

Solution

Using the cosine formula , we have

Since we have to do proving so Let's take LHS first and make it equal to the right hand side .

Taking L.H.S

a ( b cosC - C cosB )

 ⇒\footnotesize\sf \: ab. \dfrac{ {a}^{2} +  {b}^{2} -  {c}^{2}}{2ab}  - ac. \dfrac{ {c}^{2} +  {a}^{2}  -  {b}^{2}}{2ca}

⇒  \footnotesize \sf\dfrac{1}{2}( {a}^{2}  +  {b}^{2}  -  {c}^{2}  -  {c}^{2}  -  {a}^{2} +  {b}^{2})

⇒  \rm\dfrac{1}{2} (2 {b}^{2}  - 2 {c}^{2} ) =  \boxed{ \tt\pink{{b}^{2}  -  {c}^{2}} }

Therefore, LHS = b² - c² & RHS = b² - c²

 \mid \sf{LHS = RHS } \mid

 \sf\: Hence \:  , \:  Proved  ✔

 \rule{200pts}{2pts}

 \odot \:  \underline{ \sf{Related \:  Information }}

The Laws of Sines ( Sine Law ) :-

In any triangle, the sides are proportional to the sines of the opposite angles i.e

 \twoheadrightarrow \sf \dfrac{ {a}^{2} }{ \sin \sf \: A}  =  \dfrac{ {b}^{2} }{ \sin \sf \: B}  =  \dfrac{ {c}^{2} }{ \sin \sf \: C}

Projection Law :-

\twoheadrightarrow\boxed{\begin{array}{c}\sf \: a = b \cos C + c \cos B \\  \sf \:b = c \cos A + a \cos C \\  \sf  \:c = a \cos B + b \cos A\end{array}}

The Laws of Cosines :-

The square on any side of a triangle is equal to the sum of the squares on the other two sides minus twice the product of those two sides and the cosine of the included angle , i.e.

  \twoheadrightarrow\boxed{ \begin{array} { |c|} \sf \: a² = b² + c² - 2bc cosA \\ \sf \: b² = c² + a² - 2ca cosB \\ \sf c² = a² + b² - 2ab cosC \end{array}}

Area of Triangle :-

The area of triangle is given by

 \sf \triangle =  \dfrac{1}{2}ab \sin C =  \dfrac{1}{2}  bc \sin A =  \dfrac{1}{2}ac \sin B

 \rule{200pts}{2pts}

Thankyou

Answered by AutumnalEquinox
17

Question

 \sf \: In  \: any  \: △ ABC , \:  prove  \: that \\ \rm \: a(b \cos C \: - c \cos B) = {b}^{2} - {c}^{2}

Solution

a( b cosC - c cosB )

ab. a² + b² - c² / 2ab - ac . c² + a² - b² / 2ca

= 1/2 ( a² + b² - c² - c² - a² + b² )

= 1/2 ( 2b² - 2c² )

= b² - c²

LHS = RHS

Hence Proved

Thankyou

Similar questions