Math, asked by YellowHeart, 1 day ago

In any △ ABC prove that ,
 \sf \: a³ \: sin (B - C) + b³ \: sin (C - A) + c³ \: sin (A - B) = 0

Answers

Answered by 45495hstmehta
22

LHS

=a³sin(B−C)

=(2RsinA)³sin(B−C)

=2R³.2sin²A⋅2sinA⋅sin(B−C)

=2R³⋅(1−cos2A)⋅[cos(A−B+C)−cos(A+B−C)]

=2R³⋅(1−cos2A)⋅[cos(π−2B)−cos(π−2C)]

=2R³⋅(1−cos2A)⋅(cos2C−cos2B)

=2R³⋅(cos2C−cos2B−cos2A⋅cos2C+cos2A⋅cos2B)

Similarly, the second part

=2R³ (cos2A−cos2C−cos2A⋅cos2B+cos2B⋅cos2C)

And the third part

=2R³ (cos2B−cos2A−cos2B⋅cos2C+cos2A⋅cos2C)

Adding up all these three parts, we get,

a³sin(B−C)+b³sin(C−A)+c³sin(A−B)=0

Hence proved

I HOPE IT'S HELPFUL TO YOU

PLEASE MAKE ME AS BRAINLIEST

Answered by mathdude500
46

\large\underline{\sf{Solution-}}

Consider LHS

\rm \:  {a}^{3}sin(B - C) +  {b}^{3}sin(C - A) +  {c}^{3}sin(A - B) \\

can be rewritten as

\rm \: =   {a}^{2}(asin(B - C)) +  {b}^{2}(bsin(C - A)) +  {c}^{2}(csin(A - B)) \\

We know, from Sine Law

In △ ABC,

\boxed{\tt{ \rm \:  \:  \frac{a}{sinA} =  \frac{b}{sinB} =  \frac{c}{sinC} = k \: }} \\

So, from this, we get

\rm \: a = k \: sinA

\rm \: b = k \: sinB

\rm \: c = k \: sinC

So, on substituting the values, we get

\rm \:  =  {a}^{2}ksinAsin(B - C) +  {b}^{2}ksinBsin(C - A) +  {c}^{2}ksinCsin(A - B) \\

can be further rewritten as

\rm \:  =k({a}^{2}sinAsin(B - C) +  {b}^{2}sinBsin(C - A) +  {c}^{2}sinCsin(A - B)) \\

Let we Consider

\rm \: sinA = sin[\pi - (B + C)] = sin(B + C) \\

So,

\rm \: sinAsin(B - C) = sin(B + C)sin(B - C) =  {sin}^{2}B -  {sin}^{2}C

Thus,

\rm \: sinAsin(B - C)  =  {sin}^{2}B -  {sin}^{2}C \\

Similarly,

\rm \: sinBsin(C - A)  =  {sin}^{2}C -  {sin}^{2}A \\

and

\rm \: sinCsin(A - B)  =  {sin}^{2}A -  {sin}^{2}B \\

So, on substituting these values, we get

\rm \:  = k[ {a}^{2}({sin}^{2}B -  {sin}^{2}C) +  {b}^{2}({sin}^{2}C -  {sin}^{2}A) +  {c}^{2}({sin}^{2}A -  {sin}^{2}B)

On substituting the values of a, b and c, from sine law, we get

\rm \:  = k[ {k}^{2} {sin}^{2}A ({sin}^{2}B -  {sin}^{2}C) +  {k}^{2} {sin}^{2}B({sin}^{2}C -  {sin}^{2}A) +  {k}^{2} {sin}^{2}C({sin}^{2}A -  {sin}^{2}B)] \\

\rm \:  =  {k}^{3} [{sin}^{2}A ({sin}^{2}B -  {sin}^{2}C) +{sin}^{2}B({sin}^{2}C -  {sin}^{2}A) +{sin}^{2}C({sin}^{2}A -  {sin}^{2}B)] \\

\rm \:  =  {k}^{3}( {sin}^{2}A {sin}^{2}B - {sin}^{2}A {sin}^{2}C + {sin}^{2}B {sin}^{2}C - {sin}^{2}B {sin}^{2}A + {sin}^{2}C {sin}^{2}A - {sin}^{2}C {sin}^{2}B)

\rm \:   =  \: {k}^{3} \times 0 \\

\rm \:   =  \:  0 \\

Hence,

\boxed{\tt{ \rm \:  {a}^{3}sin(B - C) +  {b}^{3}sin(C - A) +  {c}^{3}sin(A - B) = 0 \: }}\\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. Cosine Law

\boxed{\tt{  \:  \: cosA =  \frac{ {b}^{2}  +  {c}^{2}  -  {a}^{2} }{2bc} \:  \: }} \\

\boxed{\tt{  \:  \: cosB =  \frac{ {c}^{2}  +  {a}^{2}  -  {b}^{2} }{2ca} \:  \: }} \\

\boxed{\tt{  \:  \: cosC =  \frac{ {a}^{2}  +  {b}^{2}  -  {c}^{2} }{2ab} \:  \: }} \\

2. Projection Formula

\boxed{\tt{ a = bcosC + ccosB \: }} \\

\boxed{\tt{ b = acosC + ccosA \: }} \\

\boxed{\tt{ c = acosB + bcosA \: }} \\

Similar questions