Math, asked by rahull2005, 1 month ago

In any quadrilateral ABCD, prove that (i) sin(A + B) + sin(C + D) = 0, (ii) cos(A + B) = cos(C + D).​

Answers

Answered by cgaff444
0

Answer:

 \sqrt[ \sqrt[ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt{ \sqrt[555 {?}^{?}  \times \frac{?}{?} ]{?} } } } } } } } ]{?} ]{?}

Step-by-step explanation:

j jxjgkkxtid

11 \sqrt[ \sqrt[?]{?} ]{?}

Answered by parambir2267
0

Answer

In a quadrilateral ABCD, ∠A+∠B+∠C+∠D=360

(i) sin(A+B)+sin(C+D)=2sin(

2

A+B+C+D

).cos(

2

A+B−C−D

)

=2sin(180).cos(

2

A+B−C−D

)

=0

(ii) cos(A+B)−cos(C+D)=−2sin(

2

A+B+C+D

).sin(

2

A+B−C−D

Similar questions