In any traingle,ABC,show that:
Answers
To Prove :-
Identities Used :-
Consider LHS
On multiply and divide by 2, we get
Using the identity,
we get
can be rewritten as
Let we first solve
Using the identity,
we get
As
We know,
we get
We know,
So, we get
On substituting the value of equation (2) in equation (1),
Hence,
Answer:
To Prove :-
\tt{{ \sin}^{2} \frac{A}{2} + {\sin} ^{2} \frac{B}{2} + { \sin}^{2} \frac{C}{2}= 1-2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}}sin
2
2
A
+sin
2
2
B
+sin
2
2
C
=1−2sin
2
A
sin
2
B
sin
2
C
Identities Used :-
\boxed{ \bf{ \: {2sin}^{2}x = 1 - cos2x}}
2sin
2
x=1−cos2x
\boxed{ \bf{ \: cosx + cosy = 2cos\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg)}}
cosx+cosy=2cos(
2
x+y
)cos(
2
x−y
)
\boxed{ \bf{ \: 1 - {2sin}^{2}x = cos2x}}
1−2sin
2
x=cos2x
\boxed{ \bf{ \: cos(x - y) - cos(x + y) = 2sinxsiny}}
cos(x−y)−cos(x+y)=2sinxsiny
\large\underline{\sf{Solution-}}
Solution−
Consider LHS
\rm :\longmapsto\:\tt{{ \sin}^{2} \dfrac{A}{2} + {\sin} ^{2} \dfrac{B}{2} + { \sin}^{2} \dfrac{C}{2}}:⟼sin
2
2
A
+sin
2
2
B
+sin
2
2
C
On multiply and divide by 2, we get
\rm \: = \dfrac{1}{2}( \:\tt{{2 \sin}^{2} \dfrac{A}{2} +2 {\sin} ^{2} \dfrac{B}{2} + 2{ \sin}^{2} \dfrac{C}{2}}) =
2
1
(2sin
2
2
A
+2sin
2
2
B
+2sin
2
2
C
)
Using the identity,
\boxed{ \bf{ \: {2sin}^{2}x = 1 - cos2x}}
2sin
2
x=1−cos2x
we get
\rm \: = \: \: \dfrac{1}{2}(1 - cosA + 1 - cosB + 1 - cosC) =
2
1
(1−cosA+1−cosB+1−cosC)
\rm \: = \: \: \dfrac{1}{2}(3 - cosA - cosB - cosC) =
2
1
(3−cosA−cosB−cosC)
can be rewritten as
\rm \: = \: \: \dfrac{1}{2}[3 - (cosA + cosB + cosC)] - - (1) =
2
1
[3−(cosA+cosB+cosC)]−−(1)
Let we first solve
\rm :\longmapsto\:cosA + cosB + cosC:⟼cosA+cosB+cosC
Using the identity,
\boxed{ \bf{ \: cosx + cosy = 2cos\bigg(\dfrac{x + y}{2} \bigg)cos\bigg(\dfrac{x - y}{2} \bigg)}}
cosx+cosy=2cos(
2
x+y
)cos(
2
x−y
)
we get
\rm \: = \: \: 2cos\bigg(\dfrac{A + B}{2} \bigg)cos\bigg(\dfrac{A - B}{2} \bigg) + cosC = 2cos(
2
A+B
)cos(
2
A−B
)+cosC
As
\boxed{ \bf{ \: A + B + C = \pi}}
A+B+C=π
\rm \: = \: \: 2cos\bigg(\dfrac{\pi - C}{2} \bigg)cos\bigg(\dfrac{A - B}{2} \bigg) + cosC = 2cos(
2
π−C
)cos(
2
A−B
)+cosC
\rm \: = \: \: 2cos\bigg(\dfrac{\pi}{2} - \dfrac{C}{2} \bigg)cos\bigg(\dfrac{A - B}{2} \bigg) + cosC = 2cos(
2
π
−
2
C
)cos(
2
A−B
)+cosC
\rm \: = \: \: 2sin\bigg(\dfrac{C}{2} \bigg)cos\bigg(\dfrac{A - B}{2} \bigg) + cosC = 2sin(
2
C
)cos(
2
A−B
)+cosC
We know,
\boxed{ \bf{ \: 1 - {2sin}^{2}x = cos2x}}
1−2sin
2
x=cos2x
we get
\rm \: = \: \: 2sin\bigg(\dfrac{C}{2} \bigg)cos\bigg(\dfrac{A - B}{2} \bigg) + 1 - 2 {sin}^{2} \dfrac{C}{2} = 2sin(
2
C
)cos(
2
A−B
)+1−2sin
2
2
C
\rm \: = \: \:1 + 2sin\bigg(\dfrac{C}{2} \bigg)cos\bigg(\dfrac{A - B}{2} \bigg) - 2 {sin}^{2} \dfrac{C}{2} = 1+2sin(
2
C
)cos(
2
A−B
)−2sin
2
2
C
\rm \: = \: \:1 + 2sin\dfrac{C}{2}\bigg[ cos\bigg(\dfrac{A - B}{2} \bigg) - {sin}^{} \dfrac{C}{2}\bigg] = 1+2sin
2
C
[cos(
2
A−B
)−sin
2
C
]
\rm \: = \:1 + 2sin\dfrac{C}{2}\bigg[ cos\bigg(\dfrac{A - B}{2} \bigg) - {sin}^{} \dfrac{\pi - (A + B)}{2}\bigg] = 1+2sin
2
C
[cos(
2
A−B
)−sin
2
π−(A+B)
]
\rm \: = \:1 + 2sin\dfrac{C}{2}\bigg[ cos\bigg(\dfrac{A - B}{2} \bigg) - {sin}^{}\bigg(\dfrac{\pi}{2} - \dfrac{(A + B)}{2}\bigg)\bigg] = 1+2sin
2
C
[cos(
2
A−B
)−sin
(
2
π
−
2
(A+B)
)]
\rm \: = \:1 + 2sin\dfrac{C}{2}\bigg[ cos\bigg(\dfrac{A - B}{2} \bigg) - {cos}^{}\bigg( \dfrac{(A + B)}{2}\bigg)\bigg] = 1+2sin
2
C
[cos(
2
A−B
)−cos
(
2
(A+B)
)]
We know,
\boxed{ \bf{ \: cos(x - y) - cos(x + y) = 2sinxsiny}}
cos(x−y)−cos(x+y)=2sinxsiny
So, we get
\rm \: = \: \: 1 + 2sin\bigg(\dfrac{C}{2} \bigg) \times 2sin\bigg(\dfrac{A}{2} \bigg)sin\bigg(\dfrac{B}{2} \bigg) = 1+2sin(
2
C
)×2sin(
2
A
)sin(
2
B
)
\rm \: = \: \: 1 + 4sin\bigg(\dfrac{A}{2} \bigg)sin\bigg(\dfrac{B}{2} \bigg)sin\bigg(\dfrac{C}{2} \bigg) - - - (2) = 1+4sin(
2
A
)sin(
2
B
)sin(
2
C
)−−−(2)
On substituting the value of equation (2) in equation (1),
\rm \: = \: \: \dfrac{1}{2}\bigg[3 -1 - 4sin\bigg(\dfrac{A}{2} \bigg)sin\bigg(\dfrac{B}{2} \bigg)sin\bigg(\dfrac{C}{2} \bigg)\bigg ] =
2
1
[3−1−4sin(
2
A
)sin(
2
B
)sin(
2
C
)]
\rm \: = \: \: \dfrac{1}{2}\bigg[2 - 4sin\bigg(\dfrac{A}{2} \bigg)sin\bigg(\dfrac{B}{2} \bigg)sin\bigg(\dfrac{C}{2} \bigg)\bigg ] =
2
1
[2−4sin(
2
A
)sin(
2
B
)sin(
2
C
)]
\rm \: = \: \:1 - 2sin\bigg(\dfrac{A}{2} \bigg)sin\bigg(\dfrac{B}{2} \bigg)sin\bigg(\dfrac{C}{2} \bigg) = 1−2sin(
2
A
)sin(
2
B
)sin(
2
C
)
Hence,
\rm :\longmapsto\:\tt{{ \sin}^{2} \dfrac{A}{2} + {\sin} ^{2} \dfrac{B}{2} + { \sin}^{2} \dfrac{C}{2}}:⟼sin
2
2
A
+sin
2
2
B
+sin
2
2
C
\rm \: = \: \:1 - 2sin\bigg(\dfrac{A}{2} \bigg)sin\bigg(\dfrac{B}{2} \bigg)sin\bigg(\dfrac{C}{2} \bigg) = 1−2sin(
2
A
)sin(
2
B
)sin(
2
C
)