in any trianangle ABC prove that :- a(Cos C - Cos B) = 2 (b-c)cos^2 A/2
Answers
Answer:
To Prove a(cosC−cosB) = 2(b−c) , in a given triangle with sides a,b and c also angles are A,B and C
soln:
We know that in a triangle have sides a,b&c and angles A,B&C,
= = = k (some constant) ---------------------- (1)
also we have A+B+C = π (ie, 180°) ---------------------------- (2)
from the statement take the LHS
LHS = a(cosC−cosB)
= k sinA [ - 2 sin() sin() ] [ by using (1) & CosA - CosB half angle formula ]
= k sinA [ - 2 sin() sin() ]
= -2k * 2 sin() * cos () [ sin() sin() ] [ using (2) and sin 2A formula ]
= -4k sin() . cos (). [ cos() . sin() ] [ using sin(90-α) & (2) ]
= 4k cos² ().cos(). sin() [ using - sin A = sin (-A) ]
= 4k cos² ().cos(). sin()
= 2k cos² (). [ 2.cos(). sin() ]
= 2k cos² (). [ sin( + ) - sin( - ) ] [ Using formula, 2cosA.sinB = sin(A+B)-sin(A-B) ]
= 2k cos² (). [ sinB- sinC ]
= 2cos² (). [ k sinB- k sinC ]
= 2cos² (). [ b - c ] [ using (1) ]
= 2(b-c)cos² ()
= RHS
ie, LHS = RHS
=> a(cosC−cosB) = 2(b-c)cos² ()
Hence proved