Math, asked by susheela4309, 7 months ago

in any trianangle ABC prove that :- a(Cos C - Cos B) = 2 (b-c)cos^2 A/2​

Answers

Answered by ravi2303kumar
3

Answer:

To Prove a(cosC−cosB) = 2(b−c) \frac{cos ^{2}A }{2} , in a given triangle with sides a,b and c also angles are A,B and C

soln:

We know that in a triangle have sides a,b&c and angles A,B&C,

 \frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sin C} = k (some constant)   ---------------------- (1)

also we have A+B+C = π (ie, 180°)  ---------------------------- (2)

from the statement take the LHS

LHS  = a(cosC−cosB)

        = k sinA [ - 2 sin(\frac{C+B}{2}) sin(\frac{C-B}{2}) ]     [ by using (1) & CosA - CosB half angle formula ]

       = k sinA [ - 2 sin(\frac{C+B}{2}) sin(\frac{C-B}{2}) ]

       = -2k * 2 sin(\frac{A}{2}) * cos (\frac{A}{2}) [ sin(\frac{\pi-A }{2}) sin(\frac{C-B}{2}) ]   [ using (2) and sin 2A formula ]

       = -4k sin(\frac{\pi-(B+C)}{2}) . cos (\frac{A}{2}). [ cos(\frac{A}{2}) . sin(\frac{C-B}{2}) ]  [ using sin(90-α) & (2) ]

       = 4k cos² (\frac{A}{2}).cos(\frac{B+C}{2}). sin(\frac{B-C}{2})   [ using - sin A = sin (-A) ]

       = 4k cos² (\frac{A}{2}).cos(\frac{B+C}{2}). sin(\frac{B-C}{2})

       = 2k cos² (\frac{A}{2}). [ 2.cos(\frac{B+C}{2}). sin(\frac{B-C}{2})  ]

       = 2k cos² (\frac{A}{2}). [ sin(\frac{B+C}{2} + \frac{B-C}{2}) - sin(\frac{B+C}{2} - \frac{B-C}{2})  ]        [ Using formula, 2cosA.sinB = sin(A+B)-sin(A-B) ]

       = 2k cos² (\frac{A}{2}). [ sinB- sinC ]

       = 2cos² (\frac{A}{2}). [ k sinB- k sinC ]

       = 2cos² (\frac{A}{2}). [ b - c ]    [ using (1) ]

       = 2(b-c)cos² (\frac{A}{2})

       = RHS

ie, LHS = RHS

=> a(cosC−cosB)  = 2(b-c)cos² (\frac{A}{2})

Hence proved

 

Similar questions