Math, asked by dfdff, 11 months ago

In any triangle ABC, a square+b square+c square divided by R square has the maximum value of​

Answers

Answered by MaheswariS
1

Answer:

\bf\frac{a^2+b^2+c^2}{R^2}\leq12

Step by step explanation:

\frac{a^2+b^2+c^2}{R^2}

Using Sine formula:

\boxed{In\:\triangle\:ABC, \frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R}

=\frac{(2R\:sinA)^2+(2R\:sinB)^2+(2R\:sinC)^2}{R^2}

=\frac{(4R^2sin^2A)+(4R^2sin^2B)+(4R^2sin^2C)}{R^2}

=\frac{4R^2[sin^2A+sin^2B+sin^2C]}{R^2}

=4[sin^2A+sin^2B+sin^2C]

using

\boxed{\text{For all A, }-1\leq\:sinA\:\leq\:1}

\leq4[1+1+1]

=12

\implies\boxed{\bf\frac{a^2+b^2+c^2}{R^2}\leq12}

Similar questions