In any triangle ABC ,angle C=45degree, then prove that (1+cotA) (1+cotB) = 2
Answers
Answered by
40
Hi,
C = 45 degree so A+B = 180-45= 135
=> cot(A+ B) = cot(180 -45)
=> (cotA.cotB - 1)/(cotA + cotB) = -cot 45 = -1
=> cotA.cotB - 1 = -cot A - cotB
=>cotA.cotB = 1-cotA -cotB
cotAcotB+cotA+cotB= 11+cotAcotB+cotA+cotB= 1+1 [Adding 1 on both side](1+cotB)+(cotAcotB+cotA)=2(1+cotB)+cotA(cotB+1)=2(1+cotB)(1+cotA)= 2
C = 45 degree so A+B = 180-45= 135
=> cot(A+ B) = cot(180 -45)
=> (cotA.cotB - 1)/(cotA + cotB) = -cot 45 = -1
=> cotA.cotB - 1 = -cot A - cotB
=>cotA.cotB = 1-cotA -cotB
cotAcotB+cotA+cotB= 11+cotAcotB+cotA+cotB= 1+1 [Adding 1 on both side](1+cotB)+(cotAcotB+cotA)=2(1+cotB)+cotA(cotB+1)=2(1+cotB)(1+cotA)= 2
Answered by
2
Given:
Angle C = 45°
To Prove:
(1+cotA) (1+cotB) = 2
Solution:
Since C = 45°
Thus,
A+B = 180 - 45 = 135
= cot(A+ B) = cot(180 -45)
= (cotA.cotB - 1)/(cotA + cotB) = -cot 45 = -1
= cotA.cotB - 1 = -cot A - cotB
= cotA.cotB = 1-cotA -cotB
= cotA.cotB + cotA + cotB = 1
1 + cotA.cotB + cotA + cotB = 1 + 1 ( Adding one on both the sides)
( 1 + cotB) + cotA.cotB + cotA = 2
( 1 + cotB) + cotA ( cotB + 1) = 2
(1+cotA) (1+cotB) = 2
Similar questions